scholarly journals J-GEM follow-up observations to search for an optical counterpart of the first gravitational wave source GW150914

2016 ◽  
Vol 68 (4) ◽  
pp. L9 ◽  
Author(s):  
Tomoki Morokuma ◽  
Masaomi Tanaka ◽  
Yuichiro Asakura ◽  
Fumio Abe ◽  
Paul J. Tristram ◽  
...  
2016 ◽  
Vol 69 (1) ◽  
pp. 9 ◽  
Author(s):  
Michitoshi Yoshida ◽  
Yousuke Utsumi ◽  
Nozomu Tominaga ◽  
Tomoki Morokuma ◽  
Masaomi Tanaka ◽  
...  

2020 ◽  
Vol 493 (3) ◽  
pp. 3379-3397 ◽  
Author(s):  
A Rossi ◽  
G Stratta ◽  
E Maiorano ◽  
D Spighi ◽  
N Masetti ◽  
...  

ABSTRACT Multimessenger astronomy received a great boost following the discovery of kilonova (KN) AT2017gfo, the optical counterpart of the gravitational wave source GW170817 associated with the short gamma-ray burst GRB 170817A. AT2017gfo was the first KN that could be extensively monitored in time using both photometry and spectroscopy. Previously, only few candidates have been observed against the glare of short GRB afterglows. In this work, we aim to search the fingerprints of AT2017gfo-like KN emissions in the optical/NIR light curves of 39 short GRBs with known redshift. For the first time, our results allow us to study separately the range of luminosity of the blue and red components of AT2017gfo-like kilonovae in short GRBs. In particular, the red component is similar in luminosity to AT2017gfo, while the blue KN can be more than 10 times brighter. Finally, we exclude a KN as luminous as AT2017gfo in GRBs 050509B and 061201.


2017 ◽  
Vol 14 (S339) ◽  
pp. 56-60
Author(s):  
T.-W. Chen

AbstractOn 17th August 2017 a strong source of gravitational waves was detected by the LIGO-Virgo collaboration. The signal lasted for 60 seconds, and the event was followed just 2 seconds later by a short burst of gamma-rays that was detected by Fermi and INTEGRAL. The gravitational-wave and gamma-ray source had consistent sky positions to within about 30 square degrees. Within 10 hours of the gravitational-wave source event, a fast fading optical and near-infrared counterpart was discovered, which was subsequently followed-up and studied intensively for several weeks and months by numerous facilities. This talk presented the results from our optical and near-infrared imaging and spectroscopic follow-up campaign of this unprecedented discovery, which was the first electromagnetic counterpart of a gravitational-wave source, the first identification of a neutron star–neutron star merger, and the first direct evidence of the source of r-process elements. It focussed on the results of the GROND and ePESSTO teams, showing that this remarkable transient truly opened up the era of multi-messenger astronomy.


2017 ◽  
Vol 13 (S338) ◽  
pp. 80-83
Author(s):  
Lucas M. Macri ◽  
Mario C. Díaz ◽  
Diego Garcia Lambas ◽  

AbstractWe present the results of prompt optical follow-up of the electromagnetic counterpart of GW170817 by the Transient Optical Robotic Observatory of the South Collaboration (TOROS). We detected highly significant dimming in the light curves of the counterpart over the course of only 80 minutes of observations obtained ~35 hr after the trigger with the T80-South telescope. A second epoch of observations, obtained ~59 hr after the event with the EABA 1.5m telescope, confirms the fast fading nature of the transient. The observed colors of the counterpart suggest that this event was a “blue kilonova” relatively free of lanthanides.


Author(s):  
S. Anand ◽  
I. Andreoni ◽  
D. A. Goldstein ◽  
M. M. Kasliwal ◽  
T. Ahumada ◽  
...  

Synoptic searches for the optical counterpart to a binary neutron star (BNS) or neutron star-black hole (NSBH) merger can pose significant challenges towards the discovery of kilonovae and performing multi-messenger science. In this work, we describe the advantage of a global multi-telescope network towards this end, with a particular focus on the key and complementary role the Dark Energy Camera (DECam) plays in multi-facility follow-up. We describe the Global Relay of Observatories Watching Transients Happen (GROWTH) Target-of-Opportunity (ToO) Marshal, a common web application we built to ingest events, plan observations, search for transient candidates, and retrieve performance summary statistics for all of the telescopes in our network. Our infrastructure enabled us to conduct observations of two events during O3a, S190426c and S190510g. Furthermore, our analysis of deep DECam observations of S190814bv conducted by the DESGW team, and access to a variety of global follow-up facilities allowed us to place meaningful constraints on the parameters of the kilonova and the merging binary. We emphasize the importance of a global telescope network in conjunction with a power telescope like DECam in performing searches for the counterparts to gravitational-wave sources.


Science ◽  
2017 ◽  
Vol 358 (6370) ◽  
pp. 1556-1558 ◽  
Author(s):  
D. A. Coulter ◽  
R. J. Foley ◽  
C. D. Kilpatrick ◽  
M. R. Drout ◽  
A. L. Piro ◽  
...  

2016 ◽  
Vol 462 (4) ◽  
pp. 4094-4116 ◽  
Author(s):  
S. J. Smartt ◽  
K. C. Chambers ◽  
K. W. Smith ◽  
M. E. Huber ◽  
D. R. Young ◽  
...  

2021 ◽  
Vol 2021 (03) ◽  
pp. 045
Author(s):  
Halim Ashkar ◽  
Francois Brun ◽  
Matthias Füßling ◽  
Clemens Hoischen ◽  
Stefan Ohm ◽  
...  
Keyword(s):  

Author(s):  
J. R. Mullaney ◽  
L. Makrygianni ◽  
V. Dhillon ◽  
S. Littlefair ◽  
K. Ackley ◽  
...  

Abstract The past few decades have seen the burgeoning of wide-field, high-cadence surveys, the most formidable of which will be the Legacy Survey of Space and Time (LSST) to be conducted by the Vera C. Rubin Observatory. So new is the field of systematic time-domain survey astronomy; however, that major scientific insights will continue to be obtained using smaller, more flexible systems than the LSST. One such example is the Gravitational-wave Optical Transient Observer (GOTO) whose primary science objective is the optical follow-up of gravitational wave events. The amount and rate of data production by GOTO and other wide-area, high-cadence surveys presents a significant challenge to data processing pipelines which need to operate in near-real time to fully exploit the time domain. In this study, we adapt the Rubin Observatory LSST Science Pipelines to process GOTO data, thereby exploring the feasibility of using this ‘off-the-shelf’ pipeline to process data from other wide-area, high-cadence surveys. In this paper, we describe how we use the LSST Science Pipelines to process raw GOTO frames to ultimately produce calibrated coadded images and photometric source catalogues. After comparing the measured astrometry and photometry to those of matched sources from PanSTARRS DR1, we find that measured source positions are typically accurate to subpixel levels, and that measured L-band photometries are accurate to $\sim50$ mmag at $m_L\sim16$ and $\sim200$ mmag at $m_L\sim18$ . These values compare favourably to those obtained using GOTO’s primary, in-house pipeline, gotophoto, in spite of both pipelines having undergone further development and improvement beyond the implementations used in this study. Finally, we release a generic ‘obs package’ that others can build upon, should they wish to use the LSST Science Pipelines to process data from other facilities.


Sign in / Sign up

Export Citation Format

Share Document