scholarly journals Vapour-Absent Melting from 10 to 20 kbar of Crustal Rocks that Contain Multiple Hydrous Phases: Implications for Anatexis in the Deep to Very Deep Continental Crust and Active Continental Margins

1996 ◽  
Vol 37 (3) ◽  
pp. 661-691 ◽  
Author(s):  
KJELL P. SKJERLIE ◽  
A. DANA JOHNSTON
Author(s):  
A. V. Maslov ◽  
V. N. Podkovyrov ◽  
E. Z. Gareev ◽  
A. D. Nozhkin

The bulk chemical composition of synrift sandstones and associated clayey rocks has been analized, and the distribution of the fields they form has been studied on discriminant paleogeodynamic SiO2K2O/Na2O [Roser, Korsch, 1986] and DF1DF2 [Verma, Armstrong-Altrin, 2013] diagrams. The studied sandstones in terms of bulk chemical composition mainly correspond to greywacke, lititic, arkose and subarkose psammites; Sublitites and quartz arenites are also found. A significant part in the analyzed data massif consists of psammites, in which log(Na2O/K2O)-1.0; missing on the Pettijohn classification chart. This confirms our conclusion, based on the results of mineralogical and petrographic studies, that the sedimentary infill of rift structures unites immature sandstones, the detrital framework of which was formed due to erosion of local sources, represented by various magmatic and sedimentary formations. Synrift clayey rocks, compared with sandstones, are composed of more mature fine-grained siliciclastics. As follows from the distribution of figurative data points of clayey rocks on the F1F2 diagram [Roser, Korsch, 1988], its sources were mainly sedimentary deposits. The content of most of the main rock-forming oxides in the synrift sandstones is almost the same as in silt-sandstone rocks present in the Upper Precambrian-Phanerozoic sedimentary mega-complex of the East European Plate, but at the same time differs significantly from the Proterozoic and Phanerozoic cratonic sediments, as well as from the average composition upper continental crust. It is shown that the distribution of the fields of syntift sandstones and clayey rocks on the SiO2K2O/Na2O diagram does not have any distinct features, and their figurative data points are localized in the areas of terrigenous rocks of passive and active continental margins. On the DF1DF2 diagram, the fields of the studied psammites and clayey rocks are located in areas of riftogenous and collisional environments. We have proposed a different position of the border between these areas in the diagram, which will require further verification.


Author(s):  
Yu-Wei Tang ◽  
Long Chen ◽  
Zi-Fu Zhao ◽  
Yong-Fei Zheng

Granitoids at convergent plate boundaries can be produced either by partial melting of crustal rocks (either continental or oceanic) or by fractional crystallization of mantle-derived mafic magmas. Whereas granitoid formation through partial melting of the continental crust results in reworking of the pre-existing continental crust, granitoid formation through either partial melting of the oceanic crust or fractional crystallization of the mafic magmas leads to growth of the continental crust. This category is primarily based on the radiogenic Nd isotope compositions of crustal rocks; positive εNd(t) values indicate juvenile crust whereas negative εNd(t) values indicate ancient crust. Positive εNd(t) values are common for syn-collisional granitoids in southern Tibet, which leads to the hypothesis that continental collision zones are important sites for the net growth of continental crust. This hypothesis is examined through an integrated study of in situ zircon U-Pb ages and Hf isotopes, whole-rock major trace elements, and Sr-Nd-Hf isotopes as well as mineral O isotopes for felsic igneous rocks of Eocene ages from the Gangdese orogen in southern Tibet. The results show that these rocks can be divided into two groups according to their emplacement ages and geochemical features. The first group is less granitic with lower SiO2 contents of 59.82−64.41 wt%, and it was emplaced at 50−48 Ma in the early Eocene. The second group is more granitic with higher SiO2 contents of 63.93−68.81 wt%, and it was emplaced at 42 Ma in the late Eocene. The early Eocene granitoids exhibit relatively depleted whole-rock Sr-Nd-Hf isotope compositions with low (87Sr/86Sr)i ratios of 0.7044−0.7048, positive εNd(t) values of 0.6−3.9, εHf(t) values of 6.5−10.5, zircon εHf(t) values of 1.6−12.1, and zircon δ18O values of 5.28−6.26‰. These isotopic characteristics are quite similar to those of Late Cretaceous mafic arc igneous rocks in the Gangdese orogen, which indicates their derivation from partial melting of the juvenile mafic arc crust. In comparison, the late Eocene granitoids have relatively lower MgO, Fe2O3, Al2O3, and heavy rare earth element (HREE) contents but higher K2O, Rb, Sr, Th, U, Pb contents, Sr/Y, and (La/Yb)N ratios. They also exhibit more enriched whole-rock Sr-Nd-Hf isotope compositions with high (87Sr/86Sr)i ratios of 0.7070−0.7085, negative εNd(t) values of −5.2 to −3.9 and neutral εHf(t) values of 0.9−2.3, and relatively lower zircon εHf(t) values of −2.8−8.0 and slightly higher zircon δ18O values of 6.25−6.68‰. An integrated interpretation of these geochemical features is that both the juvenile arc crust and the ancient continental crust partially melted to produce the late Eocene granitoids. In this regard, the compositional evolution of syn-collisional granitoids from the early to late Eocene indicates a temporal change of their magma sources from the complete juvenile arc crust to a mixture of the juvenile and ancient crust. In either case, the syn-collisional granitoids in the Gangdese orogen are the reworking products of the pre-existing continental crust. Therefore, they do not contribute to crustal growth in the continental collision zone.


2016 ◽  
Vol 283 (1844) ◽  
pp. 20162337 ◽  
Author(s):  
Steffen Kiel

Deep-sea hydrothermal vents and methane seeps are inhabited by members of the same higher taxa but share few species, thus scientists have long sought habitats or regions of intermediate character that would facilitate connectivity among these habitats. Here, a network analysis of 79 vent, seep, and whale-fall communities with 121 genus-level taxa identified sedimented vents as a main intermediate link between the two types of ecosystems. Sedimented vents share hot, metal-rich fluids with mid-ocean ridge-type vents and soft sediment with seeps. Such sites are common along the active continental margins of the Pacific Ocean, facilitating connectivity among vent/seep faunas in this region. By contrast, sedimented vents are rare in the Atlantic Ocean, offering an explanation for the greater distinction between its vent and seep faunas compared with those of the Pacific Ocean. The distribution of subduction zones and associated back-arc basins, where sedimented vents are common, likely plays a major role in the evolutionary and biogeographic connectivity of vent and seep faunas. The hypothesis that decaying whale carcasses are dispersal stepping stones linking these environments is not supported.


2002 ◽  
Vol 66 (2) ◽  
pp. 235-251 ◽  
Author(s):  
X. Wang ◽  
W. L. Griffin ◽  
S. Y. O’Reilly ◽  
X. M. Zhou ◽  
X. S. Xu ◽  
...  

AbstractThe Pingtan and Tonglu igneous complexes in SE China are typical of the calc-alkaline series developed at active continental margins. These two complexes are dominated by felsic rocks, temporally and spatially associated with minor mafic rocks. Morphological and trace-element studies of zircon populations in rocks from each of these complexes show that the zircon populations may be divided into 3–4 distinct growth stages, characterized by different distributions of morphological indices (Ipr, Ipy and Iel), and different contents of the substituting elements (Hf, U, Th, Y and P). The four growth stages recognized in the zircons are believed to have formed successively in the magma chamber, during the emplacement, and in the early and later stages of magma consolidation, respectively. All four stages are recognized in the plutonic Pingtan complex, whereas the stages 3 and 4 are less developed in the volcanic/subvolcanic Tonglu complex. Based on the chemistry and morphology of the different zircon populations of the Pingtan and Tonglu complexes, it is suggested that basaltic magmas underplating at the boundary between crust and mantle caused partial melting of the mid–lower crust and produced granitoid magmas. Subsequently, mixing between magmas was important.


1987 ◽  
Vol 24 (3) ◽  
pp. 396-406 ◽  
Author(s):  
C. Chauvel ◽  
N. T. Arndt ◽  
S. Kielinzcuk ◽  
A. Thom

A Nd isotopic study was carried out on 1.9−1.8 Ga rocks from two parts of the Trans-Hudson Orogen in northern Canada. The first part is the Reindeer Lake Zone in the Churchill Province in Saskatchewan, where a variety of volcanic, granitoid, and sedimentary rocks are preserved in several lithotectonic belts that border a reworked Archean craton to the northwest. The second area comprises the Ottawa and Belcher islands, in Hudson Bay, and the Fox River volcanics, in Manitoba. These form part of the Circum-Superior Belt, a band of basaltic volcanics and sedimentary rocks that overlies the Archean Superior craton.From U–Pb zircon ages, Pb–Pb ages, and Sm–Nd ages, Nd initial isotopic compositions were calculated for all analyzed samples. In the Saskatchewan terrains, we obtained a large range of εNd values, from +5 to −8. The highest values (+4 to +5) come from two volcanic-dominated belts (Flin Flon and Western la Ronge), lower values (~+2) characterize intervening sediment-dominated domains (Eastern La Ronge, Glennie Lake, and Kisseynew), and still lower values (−1 to −4) were found in migmatitic and granitoid belts adjacent to the reworked Archean craton in the northwest. Each lithotectonic belt has its own characteristic, restricted range of εNd values, and, with few exceptions, there is no correlation between εNd and rock type; i.e., in individual belts, volcanics, granites, and sediments have very similar εNd values.In the Circum-Superior Belt, three lava flows from the Ottawa Islands have εNd values ranging from +4.5 to 0, and samples from the Belcher Islands have values ranging from +3.5 to −9.These results are explained by mixing between mantle-derived rocks and variable amounts of Archean continental crustal rocks. Assuming that 1.9 Ga ago the mantle had an εNd value of +5 and Archean crust had an εNd value of −12, we calculate proportions of Archean crustal material in Trans-Hudson rocks ranging from ~2 to 35 %, increasing systematically toward the Archean platform. The mean Archean component is about 8%: this area of Proterozoic continental crust is clearly dominated by material derived directly from the mantle.The similarity between the εNd values of sediments, granites, and volcanics in the Trans-Hudson Orogen suggests that sedimentary processes played a dominant role in transporting Archean detritus from eroding Archean continental areas into basins, where it mixed with mantle-derived volcanic material and melted to form granitoids.


Sign in / Sign up

Export Citation Format

Share Document