scholarly journals Environments of Crystallization and Compositional Diversity of Mauna Loa Xenoliths

2002 ◽  
Vol 43 (6) ◽  
pp. 963-981 ◽  
Author(s):  
AMY M. GAFFNEY

Abstract Two picrite flows from the SW rift zone of Mauna Loa contain xenoliths of dunite, harzburgite, lherzolite, plagioclase-bearing lherzolite and harzburgite, troctolite, gabbro, olivine gabbro, and gabbronorite. Textures and olivine compositions preclude a mantle source for the xenoliths, and rare earth element concentrations of xenoliths and clinopyroxene indicate that the xenolith source is not old oceanic crust, but rather a Hawaiian, tholeiitic-stage magma. Pyroxene compositions, phase assemblages and textural relationships in xenoliths indicate at least two different crystallization sequences. Calculations using the pMELTS algorithm show that the two sequences result from crystallization of primitive Mauna Loa magmas at 6 kbar and 2 kbar. Independent calculations of olivine Ni–Fo compositional variability in the plagioclase-bearing xenoliths over these crystallization sequences are consistent with observed olivine compositional variability. Two parents of similar bulk composition, but which vary in Ni content, are necessary to explain the olivine compositional variability in the dunite and plagioclase-free peridotitic xenoliths. Xenoliths probably crystallized in a small magma storage area beneath the rift zone, rather than the large sub-caldera magma reservoir. Primitive, picritic magmas are introduced to isolated rift zone storage areas during periods of high magma flux. Subsequent eruptions reoccupy these areas, and entrain and transport xenoliths to the surface.

Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 47 ◽  
Author(s):  
Benjamin Tutolo ◽  
Bernard Evans ◽  
Scott Kuehner

We present microanalyses of secondary phyllosilicates in altered ferroan metaperidotite, containing approximately equal amounts of end-members serpentine ((Mg,Fe2+)3Si2O5(OH)4) and hisingerite (□Fe3+2Si2O5(OH)4·nH2O). These analyses suggest that all intermediate compositions can exist stably, a proposal that was heretofore impossible because phyllosilicate with the compositions reported here have not been previously observed. In samples from the Duluth Complex (Minnesota, USA) containing igneous olivine Fa36–44, a continuous range in phyllosilicate compositions is associated with hydrothermal Mg extraction from the system and consequent relative enrichments in Fe2+, Fe3+ (hisingerite), Si, and Mn. Altered ferroan–olivine-bearing samples from the Laramie Complex (Wyoming, USA) show a compositional variability of secondary FeMg–phyllosilicate (e.g., Mg–hisingerite) that is discontinuous and likely the result of differing igneous olivine compositions and local equilibration during alteration. Together, these examples demonstrate that the products of serpentinization of ferroan peridotite include phyllosilicate with iron contents proportionally larger than the reactant olivine, in contrast to the common observation of Mg-enriched serpentine in “traditional” alpine and seafloor serpentinites. To augment and contextualize our analyses, we additionally compiled greenalite and hisingerite analyses from the literature. These data show that greenalite in metamorphosed banded iron formation contains progressively more octahedral-site vacancies (larger apfu of Si) in higher XFe samples, a consequence of both increased hisingerite substitution and structure modulation (sheet inversions). Some high-Si greenalite remains ferroan and seems to be a structural analogue of the highly modulated sheet silicate caryopilite. Using a thermodynamic model of hydrothermal alteration in the Fe–silicate system, we show that the formation of secondary hydrothermal olivine and serpentine–hisingerite solid solutions after primary olivine may be attributed to appropriate values of thermodynamic parameters such as elevated a S i O 2 ( a q ) and decreased a H 2 ( a q ) at low temperatures (~200 °C). Importantly, recent observations of Martian rocks have indicated that they are evolved magmatically like the ferroan peridotites analyzed here, which, in turn, suggests that the processes and phyllosilicate assemblages recorded here are more directly relevant to those occurring on Mars than are traditional terrestrial serpentinites.


2019 ◽  
Vol 47 (1) ◽  
pp. 141-171 ◽  
Author(s):  
Daniel Jontof-Hutter

Low-mass planets have an extraordinarily diverse range of bulk compositions, from primarily rocky worlds to those with deep gaseous atmospheres. As techniques for measuring the masses of exoplanets advance the field toward the regime of rocky planets, from ultrashort orbital periods to Venus-like distances, we identify the bounds on planet compositions, where sizes and incident fluxes inform bulk planet properties. In some cases, the precision of measurement of planet masses and sizes is approaching the theoretical uncertainties in planet models. An emerging picture explains aspects of the diversity of low-mass planets, although some problems remain: Do extreme low-density, low-mass planets challenge models of atmospheric mass loss? Are planet sizes strictly separated by bulk composition? Why do some stellar characterizations differ between observational techniques? With the Transiting Exoplanet Survey Satellite ( TESS) mission, low-mass exoplanets around the nearest stars will soon be discovered and characterized with unprecedented precision, permitting more detailed planetary modeling and atmospheric characterization of low-mass exoplanets than ever before. ▪ Following the Kepler mission, studies of exoplanetary compositions have entered the terrestrial regime. ▪ Low-mass planets have an extraordinary range of compositions, from Earth-like mixtures of rock and metal to mostly tenuous gas. ▪ The TESS mission will discover low-mass planets that can be studied in more detail than ever before.


2020 ◽  
Vol 61 (7) ◽  
Author(s):  
F K Couperthwaite ◽  
T Thordarson ◽  
D J Morgan ◽  
J Harvey ◽  
M Wilson

Abstract The 2·1 ka Moinui lava flow field, erupted from the southwest rift zone of Mauna Loa, Hawai`i, exhibits striking textural and geochemical variations, that can be used to interpret magma processes pre-, syn- and post-eruption. From this lava flow, the duration of magma storage and storage conditions, the timescales over which magma is transported to the surface, and flow emplacement mechanisms at Mauna Loa are determined. Electron microprobe analysis (EMPA) and diffusion chronometry of olivine crystals identify two distinct crystal populations: a primitive, polyhedral olivine population with core compositions of Fo90–88 and a more evolved, platy olivine population with core compositions of Fo83–82. Fe–Mg diffusion modelling of these olivine populations gives distinct timescales for each population; platy olivines yield timescales of days up to a few weeks, while polyhedral olivines yield timescales of months to years. Despite the nature of a well-insulated pāhoehoe flow, meaning that post-emplacement diffusion continues for some time, a wealth of time information can be retrieved concerning pre-eruptive magmatic processes as well as the processes associated with the lava extrusion. The short timescales obtained from the platy olivine crystals and the observed equilibrium between its cores and ambient melt suggest late-stage nucleation and crystal growth in the shallow conduit and during lava emplacement. Conversely, the longer timescales and olivine-melt disequilibrium of the polyhedral olivine crystals suggests accumulation from a deeper source and subsequent transportation to shallow magma storage beneath the summit of Mauna Loa months, or even years before eruption. The chemical and textural details of the Moinui lava reflect the mode of flow emplacement and may have implications for the interpretation of the distribution of spinifex and cumulate olivine within komatiites; high-temperature, low-viscosity lavas, common in the Archean.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bhuvan Varugu ◽  
Falk Amelung

AbstractSpace-geodetic observations of a new period of inflation at Mauna Loa volcano, Hawaii, recorded an influx of 0.11 km3 of new magma into it’s dike-like magma body during 2014–2020. The intrusion started after at least 4 years of decollement slip under the eastern flank creating > 0.15 MPa opening stresses in the rift zone favorable for magma intrusion. Volcanoes commonly respond to magma pressure increase with the injection of a dike, but Mauna Loa responded with lateral growth of its magma body in the direction of decreasing topographic stress. In 2017, deformation migrated back, and inflation continued at the pre-2015 location. Geodetic inversions reveal a 8 × 8.5, 10 × 3 and 9 × 4 km2 dike-like magma body during the 2014–2015, 2015–2018 and 2018–2020 periods, respectively, and an average decollement slip of ~ 23 cm/year along a 10 × 5 km2 fault. The evolution of the dike-like magma body including the reduction in vertical extent is consistent with a slowly ascending dike propagating laterally when encountering a stress barrier and freezing its tip when magma influx waned. Overall, the magma body widened about 4.5 m during 2002–2020.


2021 ◽  
Author(s):  
◽  
William Robert Hackett

<p>Ruapehu Volcano is an active, multiple-vent, andesite composite volcano at the southern terminus of the Taupo Volcanic Zone, central North Island, New Zealand. The present-day volume of Ruapehu is estimated at 110 km3, and construction of the massif probably occurred during the past 0.5 m.y. Geologic mapping and stratigraphic studies have led to the recognition of four periods of cone construction, each occurring over 104-105 year time intervals. On the basis of lithologic/petrographic differences, and conspicuous unconformities which separate the deposits of each cone-building period, four new formations are defined, comprises the Ruapehu Group. Te Herenga formation (new formation name) comprises the oldest deposits of Ruapehu (upper lavas ca. 0.23 Ma) and is exposed as planeze surfaces and aretes on N and NW Ruapehu. The formation includes lava flows, tuff breccias, and small intrusive bodies surrounded by zones of hydrothermal alteration. There is little petrographic and compositional diversity; most lavas are porphyritic titanomagnetite- augite- hypersthene- plagioclase basic andesites. Wahiance Formation (new formation name) is younger than Te Herenga Fm,. but of unknown age. It is well exposed on SE Ruapehu, and comprises mostly lava flows and tuff breccias. The lavas comprise acid and basic andesites. Mangewhero Formation (new formation name) is well exposed everywhere except SE Ruapehu, and the upper lavas and pyroclastics (ca. 0.02 Ma) form the present high peeks and main cone of Ruapehu. The lavas are petrographically and geochemically diverse, ranging from basalt to decite in bulk composition. Some of the lower lavas are olivine-beering andesites of hybrid orgin. Whakapapa Formation (new formation name; ca 15,000 years to present) comprises conspicuously young lava flows, tuff breccias, airfall pyroclastics and minor pyroclastic flows of acid- and basic andesite. The deposits of these post-glacial summit and flank eruptions are subdivided into the lwikau, Rangataua, Tama and Crater Lake Members. 'Related vents' produced Heuhungatahi Andesite Fm. (> 0.5 Ma?), and Holocene deposits of basalt and basic andesite at isolated, monogenetic centres comprising Ohakune Andesite Fm., Pukeonake Andesite Fm., and Waimarino Basalt Fm. (new formation name). Most Ruapehu lavas are medium-K acid and basic andesites (mean of 144 bulk rock analyses is 57.8 wt % SiO2), but rare basalt and minor decite are present. Nearly all lavas are porphyritic in plagioclase, augite and hypersthene [plus or minus] olivine, with titanomagnetite micro- phenocrysts, and contain abundant metamorphic and igneous rock inclusions. Petrography, mineral chemistry and bulk rock chemistry indicate fractional crystallization series from parental basalts (52-53 % SiO2, Q-normative, low-alumina) to medium-K basic- and acid andesites (58-59 % SiO2). Early fractionating minerals are olivine and clinopyroxene with minor chrome spinel and plagioclase, followed by plagioclase, orthopyroxene, clinopyroxene and minor titanomagnetite in later stages of differentiation. Thus, basalt differentiation to produce andesites involves 'POAM-type' (Gill, 1981) fractional crystallization. Three second-order differentiation processes operate concurrently with frational crystallization: (1) Crystal accumulation involves addition of co-genetic plutonic rock fragments and crystals derived from them. These inclusions are common and few rocks represent liquid compositions. (2) Magma mixing involves mingling of magmas in repeatedly-occupied conduits. End members are as diverse as basalt and decite, yielding petrogaphically and chemically distinctive high-Mg andesites of the upper cone complex and parasitic centres. (3) Selective crustal assimilation is suggested by partially fused metamorphic inclusions, positive correlation of 87Sr/86Sr with SiO2, and failure of simple 'POAM' fractionation to explain decites (63-65 % SiO2). Petrogenesis of Ruapehu andesites takes place under open-system condition, involving production of parental Q-normative basalts in the mantle wedge, concurrent fractional crystallization and crustal contamination, entrainment of co-genetic plutonic rocks, and mixing of magmas in common conduits.</p>


Sign in / Sign up

Export Citation Format

Share Document