Foci of Segmentally Contracted Sarcomeres in Trapezius Muscle Biopsy Specimens in Myalgic and Nonmyalgic Human Subjects: Preliminary Results

Pain Medicine ◽  
2020 ◽  
Vol 21 (10) ◽  
pp. 2348-2356 ◽  
Author(s):  
Robert D Gerwin ◽  
Barbara Cagnie ◽  
Mirko Petrovic ◽  
Jo Van Dorpe ◽  
Patrick Calders ◽  
...  

Abstract Objective The myofascial trigger point hypothesis postulates that there are small foci of contracted sarcomeres in resting skeletal muscle. Only one example, in canine muscle, has been published previously. This study evaluated human muscle biopsies for foci of contracted sarcomeres. Setting The Departments of Rehabilitation Sciences and Physiotherapy at Ghent University, Ghent, Belgium. Subjects Biopsies from 28 women with or without trapezius myalgia were evaluated, 14 in each group. Methods Muscle biopsies were obtained from regions of taut bands in the trapezius muscle and processed for light and electron microscopy and for histochemical analysis. Examination of the biopsies was blinded as to group. Results A small number of foci of segmentally contracted sarcomeres were identified. One fusiform segmental locus involved the entire muscle fiber in tissue from a myalgic subject. Several transition zones from normal to contracted sarcomeres were found in both myalgic and nonmyalgic subjects. The distance between Z-lines in contracted sarcomeres was about 25–45% of the same distance in normal sarcomeres. Z-lines were disrupted and smeared in the contracted sarcomeres. Conclusions A small number of foci of segmentally contracted sarcomeres were found in relaxed trapezius muscle in human subjects, a confirmation of the only other example of spontaneous segmental contraction of sarcomeres (in a canine muscle specimen), consistent with the hypothesis of trigger point formation and with the presence of trigger point end plate noise.

2010 ◽  
Vol 109 (6) ◽  
pp. 1920-1929 ◽  
Author(s):  
Abigail L. Mackey ◽  
Lars L. Andersen ◽  
Ulrik Frandsen ◽  
Charlotte Suetta ◽  
Gisela Sjøgaard

It is hypothesized that repeated recruitment of low-threshold motor units is an underlying cause of chronic pain in trapezius myalgia. This study investigated the distribution of satellite cells (SCs), myonuclei, and macrophages in muscle biopsies from the trapezius muscle of 42 women performing repetitive manual work, diagnosed with trapezius myalgia (MYA; 44 ± 8 yr; mean ± SD) and 20 matched healthy controls (CON; 45 ± 9 yr). Our hypothesis was that muscle of MYA, in particular type I fibers, would demonstrate higher numbers of SCs, myonuclei, and macrophages compared with CON. SCs were identified on muscle cross sections by combined immunohistochemical staining for Pax7, type I myosin, and laminin, allowing the number of SCs associated with type I and II fibers to be determined. We observed a pattern of SC distribution in MYA previously only reported for individuals above 70 yr of age. Compared with CON, MYA demonstrated 19% more SCs per fiber associated with type I fibers (MYA 0.098 ± 0.039 vs. CON 0.079 ± 0.031; P < 0.05) and 40% fewer SCs associated with type II fibers (MYA 0.047 ± 0.017 vs. CON 0.066 ± 0.035; P < 0.05). The finding of similar numbers of macrophages between the two groups was not in line with our hypothesis and suggests that the elevated SC content of MYA was not due to heightened inflammatory cell contents, but rather to provide new myonuclei. The findings of greater numbers of SCs in type I fibers of muscle subjected to repeated low-intensity work support our hypothesis and provide new insight into stimuli capable of regulating SC content.


2018 ◽  
Vol 7 (1) ◽  
pp. 21-27
Author(s):  
Mubarra Rao ◽  
Sadia Shafaq

Myofascial trigger point is a hyperirritable nodule present in a palpable taut band of skeletal muscle, often results from muscle injury or repetitive strain that cause pain and tightness. Myofascial trigger points are one of the most common causes of chronic neck pain. This study aims to determine the efficacy of ischemic compression in comparison with myofascial stretching on trigger points of trapezius muscle for reduction of pain and spasm. Randomized Control Trial. The study was conducted in Ziauddin Hospital. 96 participants were enrolled in the study. Participants were divided into two groups equally and randomly, Group (A) an intervention group treated with hot pack, ultrasound therapy and ischemic compression, Group (B) a control group treated with hot pack, ultrasound therapy and myofascial stretching. This regime was followed thrice a week for three weeks. Statistically significant (P < 0.05) changes in the values were found in Group A and Group B for Visual Analog scale and Penn spasm frequency scale post treatment. The results showed that there is significant difference found after both interventions for the treatment of pain and spasm caused by myofascial trigger point. It cannot be said that ischemic compression is more effective than myofascial stretching for the treatment of myofascial trigger points of trapezius muscle.


1989 ◽  
Vol 260 (2) ◽  
pp. 443-448 ◽  
Author(s):  
M E Everts ◽  
J P Andersen ◽  
T Clausen ◽  
O Hansen

The possibility of quantifying the total concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum was investigated by measurement of the Ca2+-dependent steady-state phosphorylation from [gamma-32P]ATP and the Ca2+-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase) activity in crude muscle homogenates. The Ca2+-dependent phosphorylation at 0 degree C (mean +/- S.E.) was 40.0 +/- 2.5 (n = 6) and 6.2 +/- 0.7 (n = 4) nmol/g wet wt. in rat extensor digitorum longus (EDL) and soleus muscle, respectively (P less than 0.001). The Ca2+-dependent 3-O-MFPase activity at 37 degrees C was 1424 +/- 238 (n = 6) and 335 +/- 56 (n = 4) nmol/min per g wet wt. in rat EDL and soleus muscle, respectively (P less than 0.01). The molecular activity calculated from these measurements amounted to 35 +/- 5 min-1 (n = 6) and 55 +/- 10 min-1 (n = 4) for EDL and soleus muscle respectively. These values were not different from the molecular activity calculated for purified Ca2+-ATPase (36 min-1). The Ca2+-dependent 32P incorporation in soleus muscle decreased in the order mice greater than rats greater than guinea pigs. In EDL muscles from hypothyroid rats at a 30% reduction of the Ca2+-dependent phosphorylation was observed. The Ca2+-dependent phosphorylation in vastus lateralis muscle from three human subjects amounted to 4.5 +/- 0.8 nmol/g wet wt. It is concluded that measurement of the Ca2+-dependent phosphorylation allows rapid and reproducible quantification of the concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum. Since only 20-60 mg of tissue is required for the measurements, the method can also be used for biopsies obtained in clinical studies.


2020 ◽  
Vol 16 ◽  
pp. 174480692098407
Author(s):  
Feihong Jin ◽  
Lianying Zhao ◽  
Qiya Hu ◽  
Feng Qi

Background Myofascial pain syndrome (MPS) is an important clinical condition that is characterized by chronic muscle pain and a myofascial trigger point (MTrP) located in a taut band (TB). Previous studies showed that EphrinB1 was involved in the regulation of pathological pain via EphB1 signalling, but whether EphrinB1-EphB1 plays a role in MTrP is not clear. Methods The present study analysed the levels of p-EphB1/p-EphB2/p-EphB3 in biopsies of MTrPs in the trapezius muscle of 11 MPS patients and seven healthy controls using a protein microarray kit. EphrinB1-Fc was injected intramuscularly to detect EphrinB1s/EphB1s signalling in peripheral sensitization. We applied a blunt strike to the left gastrocnemius muscles (GM) and eccentric exercise for 8 weeks with 4 weeks of recovery to analyse the function of EphrinB1/EphB1 in the muscle pain model. Results P-EphB1, p-EphB2, and p-EphB3 expression was highly increased in human muscles with MTrPs compared to healthy muscle. EphB1 (r = 0.723, n = 11, P < 0.05), EphB2 (r = 0.610, n = 11, P < 0.05), and EphB3 levels (r = 0.670, n = 11, P < 0.05) in the MPS group were significantly correlated with the numerical rating scale (NRS) in the MTrPs. Intramuscular injection of EphrinB1-Fc produces hyperalgesia, which can be partially prevented by pre-treatment with EphB1-Fc. The p-EphB1 contents in MTrPs of MPS animals were significantly higher than that among control animals (P < 0.01). Intramuscular administration of the EphB1 inhibitor EphB1-Fr significantly suppressed mechanical hyperalgesia. Conclusions The present study showed that the increased expression of p-EphB1/p-EphB2/p-EphB3 was related to MTrPs in patients with MPS. This report is the first study to examine the function of EphrinB1-EphB1 signalling in primary muscle afferent neurons in MPS patients and a rat animal model. This pathway may be one of the most important and promising targets for MPS.


1993 ◽  
Vol 1 (3-4) ◽  
pp. 171-176 ◽  
Author(s):  
Rolf Lindman ◽  
Mats Hagberg ◽  
Ann Bengtsson ◽  
K. G. Henricksson ◽  
Lars-Eric Thornell

Sign in / Sign up

Export Citation Format

Share Document