The Effect of Conditioned Pain Modulation on Tonic Heat Pain Assessed Using Participant-Controlled Temperature

Pain Medicine ◽  
2020 ◽  
Vol 21 (11) ◽  
pp. 2839-2849
Author(s):  
Laura Sirucek ◽  
Catherine Ruth Jutzeler ◽  
Jan Rosner ◽  
Petra Schweinhardt ◽  
Armin Curt ◽  
...  

Abstract Objective Descending pain modulation can be experimentally assessed by way of testing conditioned pain modulation. The application of tonic heat as a test stimulus in such paradigms offers the possibility of observing dynamic pain responses, such as adaptation and temporal summation of pain. Here we investigated conditioned pain modulation effects on tonic heat employing participant-controlled temperature, an alternative tonic heat pain assessment. Changes in pain perception are thereby represented by temperature adjustments performed by the participant, uncoupling this approach from direct pain ratings. Participant-controlled temperature has emerged as a reliable and sex-independent measure of tonic heat. Methods Thirty healthy subjects underwent a sequential conditioned pain modulation paradigm, in which a cold water bath was applied as the conditioning stimulus and tonic heat as a test stimulus. Subjects were instructed to change the temperature of the thermode in response to variations in perception to tonic heat in order to maintain their initial rating over a two-minute period. Two additional test stimuli (i.e., lower limb noxious withdrawal reflex and pressure pain threshold) were included as positive controls for conditioned pain modulation effects. Results Participant-controlled temperature revealed conditioned pain modulation effects on temporal summation of pain (P = 0.01). Increased noxious withdrawal reflex thresholds (P = 0.004) and pressure pain thresholds (P < 0.001) in response to conditioning also confirmed inhibitory conditioned pain modulation effects. Conclusions The measured interaction between conditioned pain modulation and temporal summation of pain supports the participant-controlled temperature approach as a promising method to explore dynamic inhibitory and facilitatory pain processes previously undetected by rating-based approaches.

2021 ◽  
Author(s):  
Maria Lalouni ◽  
Jens Fust ◽  
Johan Bjureberg ◽  
Granit Kastrati ◽  
Robin Fondberg ◽  
...  

Individuals who engage in nonsuicidal self-injury (NSSI) have demonstrated higher pain thresholds and tolerance compared with individuals without NSSI. The objective of the study was to assess which aspects of the pain regulatory system that account for this augmented pain perception. In a cross-sectional design, 81 women, aged 18-35 (mean [SD] age, 23.4 [3.9]), were included (41 with NSSI and 40 healthy controls). A quantitative sensory testing protocol, including heat pain thresholds, heat pain tolerance, pressure pain thresholds, conditioned pain modulation (assessing central down-regulation of pain), and temporal summation (assessing facilitation of pain signals) was used. Thermal pain stimuli were assessed during fMRI scanning and NSSI behaviors and clinical symptoms were self-assessed. NSSI participants demonstrated higher pain thresholds during heat and pressure pain compared to controls. During conditioned pain modulation, NSSI participants showed a more effective central down-regulation of pain for NSSI participants. Temporal summation did not differ between the groups. There were no correlations between pain outcomes and NSSI behaviors or clinical characteristics. The fMRI analyses revealed increased activity in the primary and secondary somatosensory cortex in NSSI participants, compared to healthy controls, which are brain regions implicated in sensory aspects of pain processing. The findings suggest segregated inhibitory mechanisms for pain and emotion in NSSI, as pain insensitivity was linked to enhanced inhibitory control of pain in spite of significant impairments in emotion regulation. This may represent an endophenotype associated with a greater risk for developing self-injurious behavior.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Søren O’Neill ◽  
Liam Holm ◽  
Johanne Brinch Filtenborg ◽  
Lars Arendt-Nielsen ◽  
Casper Glissmann Nim

Abstract Objectives The literature on conditioned pain modulation (CPM) is inconclusive in relation to low-back pain and it is unclear how CPM affects temporal summation as a proxy of central pain integration. The aim of this study was to examine whether the CPM effect would be different on pain induced by temporal summation than single stimuli in a group of low back pain patients. Methods A total of 149 low-back pain patients were included. CPM was examined using single, repeated and temporal summation (repeated-single difference) of mechanical pressure pain as test stimuli at an individualized, fixed supra-pain-threshold force, before and after 2 min of cold pressor test (0–2 degrees Celsius). Participants were categorized as CPM responders or non-responders according to three different criteria: simple (any pain inhibition), strict (pain inhibition of more than 10VAS) and reversed (pain inhibition or facilitation of less than 10VAS). Clinical data on back pain was collected for correlation and descriptive purposes. Results Significant modulation was observed for all three test stimuli. Effects sizes were comparable in relative terms, but repeated pressure pain modulation was greater in absolute terms. No correlations to clinical data were observed, for any measure. Conclusions The current data suggests that repeated pressure pain may be better suited as the CPM test stimuli, than single pressure pain and temporal summation of pressure pain, as the CPM effect in absolute terms was greater. Employing temporal summation as the test stimulus in a CPM paradigm may be more sensitive than a single test stimulus.


Pain Medicine ◽  
2020 ◽  
Vol 21 (11) ◽  
pp. 2863-2876
Author(s):  
Kelly Marie Naugle ◽  
Thomas Ohlman ◽  
Brandon Wind ◽  
Leah Miller

Abstract Objective The temporal stability (test–retest reliability) of temporal summation of pain (TS) and conditioned pain modulation (CPM) has yet to be established in healthy older adults. The purpose of this study was to compare the temporal stability of TS and CPM in healthy older and younger adults and to investigate factors that might influence TS and CPM stability. Methods In a test–retest study, 40 healthy older adults and 30 healthy younger adults completed two sessions of quantitative sensory testing within a two-week period that included TS of heat pain, TS of mechanical pain, and CPM with pressure pain thresholds and suprathreshold heat pain as test stimuli and a cold water immersion as a conditioning stimulus. Participants also completed self-report measures of situational catastrophizing, anxiety, clinical pain, and physical activity. Absolute and relative stability were examined for each variable. Bivariate correlations examined the associations of age, clinical, behavioral, and psychological variables with the intra-individual stability of TS and CPM. Results The results revealed moderate to excellent stability for the TS measures and poor to moderate stability for CPM. The results also revealed significant age differences for two of the TS measures and CPM, with younger adults having greater stability compared with older adults. Additionally, the magnitude and stability of psychological factors were correlated with stability of TS. Conclusions These findings suggest that TS and CPM may be more reliable in younger compared with older adults. Furthermore, psychological states may be an important factor influencing the stability of TS in healthy adults.


2019 ◽  
Vol 72 (3-4) ◽  
pp. 66-71
Author(s):  
Aleksandar Knezevic ◽  
Milena Kovacevic ◽  
Ljiljana Klicov ◽  
Magdalena Pantic ◽  
Jana Vasin ◽  
...  

Introduction. The objective of the study was to determine the potentials and reliability of conditioned pain modulation effect in healthy population by application of a conditioning contact heat stimulus, and heat and pressure applied to the low back region as a test stimulus. Material and Methods. The study included 33 healthy subjects (average age 25.73 ? 5.35 years). Pressure and heat pain thresholds were examined on the paravertebral musculature of the lower back as test stimuli. Contact heat was used on the contralateral forearm as a conditioning stimulus. Conditioned pain modulation was calculated as the difference between pain thresholds after and before conditioning stimulus application. To assess the reliability, identical testing was performed 14 ? 2 days later. Results. The pressure and heat pain thresholds, after the conditioning stimulus, were significantly higher compared to pain thresholds obtained before the conditioning stimulus (101,63 N/cm2 ? 45,21N/cm2 vs 82,15 N/cm2 ? 36,15 N/cm2, t = -7,528, p < 0,001 and 47,08?C ? 2,19o C vs 45,00 ? 3,05?C, t = -6,644, p < 0,001, respectively). The reli?ability of the same protocol, measured 14 ? 2 days after the previous testing, showed good reliability of the pressure pain threshold (intraclass correlation coefficient = 0,636, 95% confidence interval 0,240 - 0,825), and fair of the heat pain threshold (intraclass cor?relation coefficient = 0,435, 95% confidence interval - 0,070 - 0,713). Conclusion. Conditioned pain modulation was successfully induced by contact heat applied via a thermode, a conditioning stimulus. The reliability of this method of testing proved to be fair when it comes to the heat pain threshold and good when it comes to the pressure pain threshold.


Author(s):  
Kemery J. Sigmund ◽  
Marie K. Hoeger Bement ◽  
Jennifer E. Earl-Boehm

Objective: Patellofemoral pain has high recurrence rates and minimal long-term treatment success. Central sensitization refers to dysfunctional pain modulation that occurs when nociceptive neurons become hyper responsive. Research in this area in PFP has been increasingly productive in the past decade. The aim of this review is to determine whether evidence supports manifestations of central sensitization in individuals with PFP. Data sources: MeSH terms for quantitative sensory testing (QST) pressure pain thresholds, conditioned pain modulation, temporal summation, sensitization, hyperalgesia, and anterior knee pain or PFP were searched in PubMed, SportDiscus, CINAHL, Academic Search Complete, and Ebscohost. Study Selection: Peer reviewed studies written in English, published between 2005–2020 which investigated QST and/or pain mapping in a sample with PFP were included in this review. Data Extraction: The initial search yielded 140 articles. After duplicates were removed, 78 article abstracts were reviewed. Full-text review of 21 studies occurred, with 11 studies included in the meta-analysis and eight studies included in the systematic review. Data Synthesis: A random-effects meta-analysis was conducted for four QST variables (local pressure pain thresholds, remote pressure pain thresholds, conditioned pain modulation, temporal summation). Strong evidence supports lower local and remote pressure pain thresholds, impaired conditioned pain modulation, and facilitated temporal summation in individuals with PFP compared to pain-free individuals. Conflicting evidence is presented for heat and cold pain thresholds. Pain mapping demonstrated expanding pain patterns associated with long PFP symptom duration. Conclusions: Signs of central sensitization are present in individuals with PFP, indicating altered pain modulation. PFP etiological and treatment models should reflect the current body of evidence regarding central sensitization. Signs of central sensitization should be monitored clinically and treatments with central effects should be considered as part of a multi-modal plan of care. Registration Number: This review is registered with Prospero (CRD42019127548) Registration URL: https://www.crd.york.ac.uk/PROSPERO Key Points:


2018 ◽  
Vol 12 (4) ◽  
pp. 250-256 ◽  
Author(s):  
Theresa Wodehouse ◽  
Kavita Poply ◽  
Shankar Ramaswamy ◽  
Saowarat Snidvongs ◽  
Julius Bourke ◽  
...  

Background: Fibromyalgia is a chronic musculoskeletal pain condition that is often associated with sleep disturbances and fatigue. The pathophysiology of fibromyalgia is not understood, but indirect evidence suggests a central dysfunction of the nociceptive modulating system. The aim of this study was to evaluate whether quantitative sensory testing detects a change in pain thresholds in fibromyalgia patient receiving pregabalin treatment. Methods: A total of 25 patients were recruited for the study and received routine pregabalin, but only 14 patients completed the treatment. Assessment of pressure pain thresholds and changes in conditioned pain modulation using ischaemic pain as a conditioning stimulus were measured at baseline and every 4 weeks for 12 weeks. Fibromyalgia impact questionnaire, PainDETECT and SF-12 were also completed. Results: Patients with fibromyalgia demonstrated a less-efficient conditioned pain modulation at baseline. An efficient conditioned pain modulation was observed at 1 month and this was maintained until the final visit. Pressure pain thresholds (PPTs) showed a significant improvement from baseline. Patients also reported a similar magnitude of improvements in PainDETECT, fibromyalgia impact questionnaire (FIQ) and its impact on daily life and change in outcome for SF-12. Conclusion: This pilot study reports an increase in PPTs and improved conditioned pain modulation response after commencing pregabalin, which was maintained at 12 weeks, and this was supported by positive pain scores. Pregabalin is a licenced treatment for fibromyalgia in Europe, and its response to central sensitisation, particularly ‘dynamic responses’, has not been reported. We conclude that pregabalin has the potential to reduce peripheral and central sensitisation in patients with fibromyalgia, as measured using quantitative sensory testing.


2019 ◽  
Vol 19 (3) ◽  
pp. 565-574 ◽  
Author(s):  
Jesper Bie Larsen ◽  
Pascal Madeleine ◽  
Lars Arendt-Nielsen

Abstract Background and aims Conditioned pain modulation (CPM) is of considerable interest within pain research. Often CPM testing is conducted in experimental settings using complicated instrumentation, thus challenging the implementation in clinical settings. Being able to assess CPM in a fast and reliable way in clinical settings could lead to a new diagnostic tool allowing improved profiling of pain patients. Methods A test-retest reliability study and a methodological development study were conducted based on different populations. The reliability study included 22 healthy subjects, mean age 23.6 years (SD: 2.4) and the methodological study included 29 healthy subjects, mean age 21.5 years (SD: 1.6). As painful phasic test stimulus, a 6–10 kg handheld, spring-based pressure algometer was applied perpendicularly to the muscle belly of the tibialis anterior muscle for 10 s and as painful tonic conditioning stimulus, 1–2 standard clamps, inducing a force of 1.3 kg, were applied extra-segmentally at the ipsilateral earlobe for 60–120 s. Four different test protocols were evaluated, of which one protocol was investigated for reliability. Test protocol 1 used a 6 kg pressure algometer as painful phasic test stimulus and a single clamp applied for 60 s as painful tonic conditioning stimulus. Test protocol 2 used a 10 kg pressure algometer as painful phasic test stimulus, and two clamps applied for 60 s as painful tonic conditioning stimulus. Test protocol 3 used a 10 kg pressure algometer as painful phasic test stimulus and a single clamp applied for 120 s as painful tonic conditioning stimulus. Test protocol 4 used a 6 kg pressure algometer as painful phasic test stimulus and a single clamp applied for 120 s as painful tonic conditioning stimulus. Results None of the stimuli caused any adverse events, e.g. bruises. In the reliability study (test protocol (1), non-significant CPM effects of 0.3 (SD: 1.6) and 0.2 (SD: 1.0) were observed in session 1 and 2, respectively. The intra-class correlations were 0.67 and 0.72 (p = < 0.01) and limits of agreement (LoA) ranged from −2.76 to 3.31. Non-significant CPM effects of 0.2 (SD: 1.0), −0.1 (SD: 1.1), and 0.0 (SD: 1.2) were observed for test protocol 2, 3, and 4, respectively). Conclusions The bedside test developed for investigating CPM was feasible and easy to use in healthy volunteers. No significant CPM effects were measured and a large variation in CPM effect ranging from −0.14 to 0.32 was observed. Intra-class correlation (ICC) values for the pressure algometer were interpreted as “good relative reliability” (test protocol 1), and LoA revealed a somewhat low absolute reliability. Implications The pressure algometer provided reproducible measurements and was useful for inducing phasic test stimuli. Since no significant CPM effects were detected, no recommendations for the bedside test can yet be made. Further examinations will have to establish if the “one size fits all” application of both test and conditioning stimuli is useful. Future bedside studies involving patient populations are warranted to determine the usefulness of the method.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Casper Glissmann Nim ◽  
Søren O’Neill ◽  
Anne Gellert Geltoft ◽  
Line Korsholm Jensen ◽  
Berit Schiøttz-Christensen ◽  
...  

Abstract Introduction Little is known about the underlying biomechanical cause of low back pain (LBP). Recently, technological advances have made it possible to quantify biomechanical and neurophysiological measurements, potentially relevant factors in understanding LBP etiology. However, few studies have explored the relation between these factors. This study aims to quantify the correlation between biomechanical and neurophysiological outcomes in non-specific LBP and examine whether these correlations differ when considered regionally vs. segmentally. Methods This is a secondary cross-sectional analysis of 132 participants with persistent non-specific LBP. Biomechanical data included spinal stiffness (global stiffness) measured by a rolling indenter. Neurophysiological data included pain sensitivity (pressure pain threshold and heat pain threshold) measured by a pressure algometer and a thermode. Correlations were tested using Pearson’s product-moment correlation or Spearman’s rank correlation as appropriate. The association between these outcomes and the segmental level was tested using ANOVA with post-hoc Tukey corrected comparisons. Results A moderate positive correlation was found between spinal stiffness and pressure pain threshold, i.e., high degrees of stiffness were associated with high pressure pain thresholds. The correlation between spinal stiffness and heat pain threshold was poor and not statistically significant. Aside from a statistically significant minor association between the lower and the upper lumbar segments and stiffness, no other segmental relation was shown. Conclusions The moderate correlation between spinal stiffness and mechanical pain sensitivity was the opposite of expected, meaning higher degrees of stiffness was associated with higher pressure pain thresholds. No clinically relevant segmental association existed.


Sign in / Sign up

Export Citation Format

Share Document