Anticoagulation Use During Dorsal Column Spinal Cord Stimulation Trial

Pain Medicine ◽  
2020 ◽  
Vol 21 (10) ◽  
pp. 2595-2598
Author(s):  
Ryan S D’Souza ◽  
Jonathan M Hagedorn
2014 ◽  
Vol 18 (2) ◽  
pp. 133-140 ◽  
Author(s):  
Kevin T. Huang ◽  
Joel Martin ◽  
Andrew Marky ◽  
Gustavo Chagoya ◽  
Jeff Hatef ◽  
...  

2020 ◽  
Vol 23 (5) ◽  
pp. 620-625 ◽  
Author(s):  
Richard North ◽  
Mehul J. Desai ◽  
Johan Vangeneugden ◽  
Christian Raftopoulos ◽  
Tony Van Havenbergh ◽  
...  

1989 ◽  
Vol 12 (4) ◽  
pp. 733-738 ◽  
Author(s):  
TETSUO KANNO ◽  
YOSHIFUMI KAMEL ◽  
TETSUYA YOKOYAMA ◽  
MOTOI SHODA ◽  
HIDEAKI TANJI ◽  
...  

2017 ◽  
Vol 117 (1) ◽  
pp. 136-147 ◽  
Author(s):  
Nathan D. Crosby ◽  
John J. Janik ◽  
Warren M. Grill

Kilohertz-frequency spinal cord stimulation (KHF-SCS) is a potential paresthesia-free treatment for chronic pain. However, the effects of KHF-SCS on spinal dorsal column (DC) axons and its mechanisms of action remain unknown. The objectives of this study were to quantify activation and conduction block of DC axons by KHF-SCS across a range of frequencies (1, 5, 10, or 20 kHz) and waveforms (biphasic pulses or sinusoids). Custom platinum electrodes delivered SCS to the T10/T11 dorsal columns of anesthetized male Sprague-Dawley rats. Single DC axons and compound action potentials were recorded during KHF-SCS to evaluate SCS-evoked activity. Responses to KHF-SCS in DC axons included brief onset firing, slowly accommodating asynchronous firing, and conduction block. The effects of KHF-SCS mostly occurred well above motor thresholds, but isolated units were activated at amplitudes shown to reduce behavioral sensitivity in rats. Activity evoked by SCS was similar across a range of frequencies (5–20 kHz) and waveforms (biphasic and sinusoidal). Stimulation at 1-kHz SCS evoked more axonal firing that was also more phase-synchronized to the SCS waveform, but only at amplitudes above motor threshold. These data quantitatively characterize the central nervous system activity that may modulate pain perception and paresthesia, and thereby provide a foundation for continued investigation of the mechanisms of KHF-SCS and its optimization as a therapy for chronic pain. Given the asynchronous and transient nature of DC activity, it is unlikely that the same mechanisms underlying conventional SCS (i.e., persistent, periodic DC activation) apply to KHF-SCS. NEW & NOTEWORTHY Kilohertz-frequency spinal cord stimulation (KHF-SCS) is a new mode of SCS that may offer better pain relief than conventional SCS. However, the mechanism of action is poorly characterized, especially the effects of stimulation on dorsal column (DC) axons, which are the primary target of stimulation. This study provides the first recordings of single DC axons during KHF-SCS to quantify DC activity that has the potential to mediate the analgesic effects of KHF-SCS.


2021 ◽  
pp. E407-E423

BACKGROUND: Evidence suggests that dorsal root ganglion stimulation (DRGS) is a more effective treatment for focal neuropathic pain (FNP) compared with tonic, paresthesia-based dorsal column spinal cord stimulation (SCS). However, new advancements in waveforms for dorsal column SCS have not been thoroughly studied or compared with DRGS for the treatment of FNP. OBJECTIVES: The purpose of this review was to examine the evidence for these novel technologies; to highlight the lack of high-quality evidence for the use of neuromodulation to treat FNP syndromes other than complex regional pain syndrome I or II of the lower extremity; to emphasize the absence of comparison studies between DRGS, burst SCS, and high-frequency SCS; and to underscore that consideration of all neuromodulation systems is more patient-centric than a one-size-fits-all approach. STUDY DESIGN: This is a review article summarizing case reports, case series, retrospective studies, prospective studies, and review articles. SETTING: The University of Miami, Florida. METHODS: A literature search was conducted from February to March 2020 using the PubMed and EMBASE databases and keywords related to DRGS, burst SCS, HF10 (high-frequency of 10 kHz), and FNP syndromes. All English-based literature from 2010 reporting clinical data in human patients were included. RESULTS: Data for the treatment of FNP using burst SCS and HF10 SCS are limited (n = 11 for burst SCS and n = 11 for HF10 SCS). The majority of these studies were small, single-center, nonrandomized, noncontrolled, retrospective case series and case reports with short follow-up duration. To date, there are only 2 randomized controlled trials for burst and HF10 for the treatment of FNP. LIMITATIONS: No studies were available comparing DRGS to HF10 or burst for the treatment of FNP. Data for the treatment of FNP using HF10 and burst stimulation were limited to a small sample size reported in mostly case reports and case series. CONCLUSIONS: FNP is a complex disease, and familiarity with all available systems allows the greatest chance of success. KEY WORDS: Dorsal root ganglion, high frequency, burst, spinal cord stimulation, neuromodulation, focal neuropathic pain


2021 ◽  
pp. 193229682110600
Author(s):  
Natalie H. Strand ◽  
Adam R. Burkey

Background: Neuropathies, the most common complication of diabetes, manifest in various forms, including entrapments, mononeuropathies or, most frequently, a distal symmetric polyneuropathy. Painful diabetic neuropathy (PDN) in the classic “stocking” distribution is a disease of increasing prevalence worldwide and a condition for which standard medical treatment only provides modest relief. Neuromodulation offers a potential alternative to pharmacotherapies given its demonstrated efficacy in other refractory chronic neuropathic pain syndromes. High-quality evidence from randomized controlled trials (RCTs) is available in these other settings for two approaches to spinal cord stimulation (SCS): (1) conventional low-frequency SCS (LF-SCS), which modulates axonal activity in the dorsal column and is paresthesia-dependent, and (2) high-frequency SCS delivered at 10 kilohertz (10 kHz SCS), which targets neurons in the superficial dorsal horn and is paresthesia-independent. Method: This review examines the evidence for SCS from published RCTs as well as prospective studies exploring the safety and effectiveness of treating PDN with neuromodulation. Results: Two RCTs enrolling 60 and 36 participants with PDN showed treatment with LF-SCS reduced daytime pain by 45% to 55% for up to two years. An RCT testing 10 kHz SCS versus conventional medical management (CMM) in 216 participants with PDN revealed 76% mean pain relief after six months of stimulation. None of the studies revealed unexpected safety issues in the use of neuromodulation in this patient population. Conclusion: These well-designed RCTs address the unmet need for improved PDN therapies and provide data on the safety, effectiveness, and durability of SCS therapy.


Sign in / Sign up

Export Citation Format

Share Document