Estimation of Radiation Exposure in the Pediatric Cath Lab in Ain Shams University; Cross-Sectional Observational Study

QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Ahmed Abdelrazik ◽  
Youssef Amin ◽  
Alaa Roushdy ◽  
Maiy El Sayed

Abstract Aim and objectives The aim of the study is to assess the average radiation doses recorded per procedure in Ain Shams University Hospital pediatric cath lab to set benchmarks of radiation exposure in our institute. Patients and Methods The study included 198 patients who presented to Ain Shams cardiac pediatric cath lab who undergone interventional (BPV, BAV, ASD device closure, VSD device closure, PDA coil/device closure, Coarctation Stent/balloon) and diagnostic (Hemodynamics study, Diagnostic cath) heart catheterization. Radiation doses were measured without any interference with the operator’s preferences. Results Radiation dosages were measured in total AirKerma, Dose area product (DAP), and fluoroscopy time to set the benchmarks for radiation exposure in our institute per procedure. VSD device closure showed the highest radiation exposure followed by Coarctation stenting. Lowest radiation dosage was in PDA coil closure followed by ASD device closure then BPV. Conclusion Benchmarks for radiation exposure per procedure in pediatric cath lab in our institute were set and compared to each other.

2019 ◽  
Vol 46 (3) ◽  
pp. 167-171 ◽  
Author(s):  
Alejandro Gutiérrez-Barrios ◽  
Hugo Camacho-Galán ◽  
Francisco Medina-Camacho ◽  
Dolores Cañadas-Pruaño ◽  
Antonio Jimenez-Moreno ◽  
...  

Exposure to ionizing radiation during cardiac catheterization can have harmful consequences for patients and for the medical staff involved in the procedures. Minimizing radiation doses during the procedures is essential. We investigated whether fine-tuning the radiation protocol reduces radiation doses in the cardiac catheterization laboratory. In January 2016, we implemented a new protocol with reduced radiation doses in the Hospital de Jerez catheterization laboratory. We analyzed 170 consecutive coronary interventional procedures (85 of which were performed after the new protocol was implemented) and the personal dosimeters of the interventional cardiologists who performed the procedures. Overall, the low-radiation protocol reduced air kerma (dose of radiation) by 44.9% (95% CI, 18.4%–70.8%; P=0.001). The dose-area product decreased by 61% (95% CI, 30.2%–90.1%; P <0.001) during percutaneous coronary interventions. We also found that the annual deep (79%, P=0.026) and shallow (62.2%, P=0.035) radiation doses to which primary operators were exposed decreased significantly under the low-radiation protocol. These dose reductions were achieved without increasing the volume of contrast media, fluoroscopy time, or rates of procedural complications, and without reducing the productivity of the laboratory. Optimizing the radiation safety protocol effectively reduced radiation exposure in patients and operators during cardiac catheterization procedures.


2018 ◽  
Vol 28 (5) ◽  
pp. 653-660 ◽  
Author(s):  
Olivier Villemain ◽  
Sophie Malekzadeh-Milani ◽  
Fidelio Sitefane ◽  
Meriem Mostefa-Kara ◽  
Younes Boudjemline

AbstractObjectivesThe aims of this study were to describe radiation level at our institution during transcatheter patent ductus arteriosus occlusion and to evaluate the components contributing to radiation exposure.BackgroundTranscatheter occlusion relying on X-ray imaging has become the treatment of choice for patients with patent ductus arteriosus. Interventionists now work hard to minimise radiation exposure in order to reduce risk of induced cancers.MethodsWe retrospectively reviewed all consecutive children who underwent transcatheter closure of patent ductus arteriosus from January 2012 to January 2016. Clinical data, anatomical characteristics, and catheterisation procedure parameters were reported. Radiation doses were analysed for the following variables: total air kerma, mGy; dose area product, Gy.cm2; dose area product per body weight, Gy.cm2/kg; and total fluoroscopic time.ResultsA total of 324 patients were included (median age=1.51 [Q1–Q3: 0.62–4.23] years; weight=10.3 [6.7–17.0] kg). In all, 322/324 (99.4%) procedures were successful. The median radiation doses were as follows: total air kerma: 26 (14.5–49.3) mGy; dose area product: 1.01 (0.56–2.24) Gy.cm2; dose area product/kg: 0.106 (0.061–0.185) Gy.cm2/kg; and fluoroscopic time: 2.8 (2–4) min. In multivariate analysis, a weight >10 kg, a ductus arteriosus width <2 mm, complications during the procedure, and a high frame rate (15 frames/second) were risk factors for an increased exposure.ConclusionLower doses of radiation can be achieved with subsequent recommendations: technical improvement, frame rate reduction, avoidance of biplane cineangiograms, use of stored fluoroscopy as much as possible, and limitation of fluoroscopic time. A greater use of echocardiography might even lessen the exposure.


2020 ◽  
Vol 33 (6) ◽  
pp. 838-844
Author(s):  
Jan-Helge Klingler ◽  
Ulrich Hubbe ◽  
Christoph Scholz ◽  
Florian Volz ◽  
Marc Hohenhaus ◽  
...  

OBJECTIVEIntraoperative 3D imaging and navigation is increasingly used for minimally invasive spine surgery. A novel, noninvasive patient tracker that is adhered as a mask on the skin for 3D navigation necessitates a larger intraoperative 3D image set for appropriate referencing. This enlarged 3D image data set can be acquired by a state-of-the-art 3D C-arm device that is equipped with a large flat-panel detector. However, the presumably associated higher radiation exposure to the patient has essentially not yet been investigated and is therefore the objective of this study.METHODSPatients were retrospectively included if a thoracolumbar 3D scan was performed intraoperatively between 2016 and 2019 using a 3D C-arm with a large 30 × 30–cm flat-panel detector (3D scan volume 4096 cm3) or a 3D C-arm with a smaller 20 × 20–cm flat-panel detector (3D scan volume 2097 cm3), and the dose area product was available for the 3D scan. Additionally, the fluoroscopy time and the number of fluoroscopic images per 3D scan, as well as the BMI of the patients, were recorded.RESULTSThe authors compared 62 intraoperative thoracolumbar 3D scans using the 3D C-arm with a large flat-panel detector and 12 3D scans using the 3D C-arm with a small flat-panel detector. Overall, the 3D C-arm with a large flat-panel detector required more fluoroscopic images per scan (mean 389.0 ± 8.4 vs 117.0 ± 4.6, p < 0.0001), leading to a significantly higher dose area product (mean 1028.6 ± 767.9 vs 457.1 ± 118.9 cGy × cm2, p = 0.0044).CONCLUSIONSThe novel, noninvasive patient tracker mask facilitates intraoperative 3D navigation while eliminating the need for an additional skin incision with detachment of the autochthonous muscles. However, the use of this patient tracker mask requires a larger intraoperative 3D image data set for accurate registration, resulting in a 2.25 times higher radiation exposure to the patient. The use of the patient tracker mask should thus be based on an individual decision, especially taking into considering the radiation exposure and extent of instrumentation.


2021 ◽  
pp. 105566562110017
Author(s):  
Yoshikazu Kobayashi ◽  
Masanao Kobayashi ◽  
Daisuke Kanamori ◽  
Naoko Fujii ◽  
Yumi Kataoka ◽  
...  

Objective: Some patients with cleft palate (CP) need secondary surgery to improve functionality. Although 4-dimensional assessment of velopharyngeal closure function (VPF) in patients with CP using computed tomography (CT) has been existed, the knowledge about quantitative evaluation and radiation exposure dose is limited. We performed a qualitative and quantitative assessment of VPF using CT and estimated the exposure doses. Design: Cross-sectional. Setting: Computed tomography images from 5 preoperative patients with submucous CP (SMCP) and 10 postoperative patients with a history of CP (8 boys and 7 girls, aged 4-7 years) were evaluated. Patients: Five patients had undergone primary surgery for SMCP; 10 received secondary surgery for hypernasality. Main Outcome Measures: The presence of velopharyngeal insufficiency (VPI), patterns of velopharyngeal closure (VPC), and cross-sectional area (CSA) of VPI was evaluated via CT findings. Organ-absorbed radiation doses were estimated in 5 of 15 patients. The differences between cleft type and VPI, VPC patterns, and CSA of VPI were evaluated. Results: All patients had VPI. The VPC patterns (SMCP/CP) were evaluated as coronal (1/4), sagittal (0/1), circular (1/2), and circular with Passavant’s ridge (2/2); 2 patients (1/1) were unevaluable because of poor VPF. The CSA of VPI was statistically larger in the SMCP group ( P = .0027). The organ-absorbed radiation doses were relatively lower than those previously reported. Conclusions: Four-dimensional CT can provide the detailed findings of VPF that are not possible with conventional CT, and the exposure dose was considered medically acceptable.


2018 ◽  
Vol 179 (4) ◽  
pp. 261-267 ◽  
Author(s):  
C T Fuss ◽  
M Treitl ◽  
N Rayes ◽  
P Podrabsky ◽  
W K Fenske ◽  
...  

Objective Adrenal vein sampling (AVS) represents the current diagnostic standard for subtype differentiation in primary aldosteronism (PA). However, AVS has its drawbacks. It is invasive, expensive, requires an experienced interventional radiologist and comes with radiation exposure. However, exact radiation exposure of patients undergoing AVS has never been examined. Design and methods We retrospectively analyzed radiation exposure of 656 AVS performed between 1999 and 2017 at four university hospitals. The primary outcomes were dose area product (DAP) and fluoroscopy time (FT). Consecutively the effective dose (ED) was approximately calculated. Results Median DAP was found to be 32.5 Gy*cm2 (0.3–3181) and FT 18 min (0.3–184). The calculated ED was 6.4 mSv (0.1–636). Remarkably, values between participating centers highly varied: Median DAP ranged from 16 to 147 Gy*cm2, FT from 16 to 27 min, and ED from 3.2 to 29 mSv. As main reason for this variation, differences regarding AVS protocols between centers could be identified, such as number of sampling locations, frames per second and the use of digital subtraction angiographies. Conclusion This first systematic assessment of radiation exposure in AVS not only shows fairly high values for patients, but also states notable differences among the centers. Thus, we not only recommend taking into account the risk of radiation exposure, when referring patients to undergo AVS, but also to establish improved standard operating procedures to prevent unnecessary radiation exposure.


2018 ◽  
Vol 184 (1) ◽  
pp. 1-4 ◽  
Author(s):  
A Brindhaban

Abstract The objective of this study was to evaluate dose–area product (DAP) and peak skin dose (PSD) for coronary angiography (CA) and percutaneous coronary intervention (PCI). The DAP and PSD of 300 randomly selected patients who were referred to CA and/or PCI, over a period of 3 months were recorded and analyzed. The mean DAP of 32 Gy cm2 and mean PSD of 412 mGy for CA were lower than 118 Gy cm2 and 857 mGy, respectively, for PCI. The DAP range of 2–84 Gy cm2 for CA and 12–378 mGy for PCI were also established. The maximum value of PSD for PCI procedures reached above the 2 Gy threshold for erythema. However, these values are similar to those available in literature. Periodic surveys may be required to monitor and/or reduce radiation doses in coronary interventional procedures.


2021 ◽  
Vol 94 (1117) ◽  
pp. 20190878
Author(s):  
Anna Kropelnicki ◽  
Rosemary Eaton ◽  
Alexandra Adamczyk ◽  
Jacqueline Waterman ◽  
Pegah Mohaghegh

Objective: Mini C-arm fluoroscopes are widely used by orthopaedic surgeons for intraoperative image guidance without the need for radiographers. This puts the responsibility for radiation exposure firmly with the operating surgeon. In order to maintain safe and best practice under U.K. Ionising Radiation (Medical Exposure) Regulations, one must limit radiation exposure and audit performance using national diagnostic reference levels (DRLs). In the case of the mini C-arm, there are no national DRLs. IR(ME)R, therefore, require the establishment of local DRLs by each hospital to act as an alternative guideline for safe radiation use. The aim of our audit was to establish local DRLs based on our experience operating with the use of the mini C-arm over the last 7 years. Methods: This retrospective audit evaluates the end dose–area product (DAP) recorded for common trauma and orthopaedic procedures using the mini C-arm in a busy district general hospital. We present the quartile data and have set the cut-off point as the third quartile for formulating the local DRLs, consistent with the methodology for the conventional fluoroscope. Results: For our data set (n = 1664), the third quartile DAP values were lowest for surgeries to the forearm (5.38 cGycm2), hand (7.62 cGycm2), and foot/ankle (8.56 cGycm2), and highest for wrist (10.64 cGycm2) and elbow (14.61 cGycm2) procedures. Advances in knowledge: To our knowledge, this is the largest data set used to establish local DRLs. Other centres may find our guidelines useful whilst they establish their own local DRLs.


2016 ◽  
Vol 98 (7) ◽  
pp. 483-487 ◽  
Author(s):  
JF Maempel ◽  
OD Stone ◽  
AW Murray

Introduction Surgical procedures to manage trauma to the wrist, forearm and elbow in children are very common. Image intensifiers are used routinely, yet studies/guidelines that quantify expected radiation exposure in such procedures are lacking. Methods Information on demographics, injury type, surgeon grade and dose area product (DAP) of radiation exposure per procedure was collected prospectively for 248 patients undergoing manipulation/fixation of injuries to the elbow, forearm or wrist at a paediatric hospital over 1 year. Results DAP exposure (in cGycm2) differed significantly across different procedures (p<0.001): wrist manipulation under anaesthesia (MUA; median, 0.39), wrist k-wiring (1.01), forearm MUA (0.50), flexible nailing of the forearm (2.67), supracondylar fracture MUA and k-wiring (2.23) and open reduction and internal fixation of the lateral humeral condyle (0.96). Fixation of a Gartland grade-3 supracondylar fracture (2.94cGycm2) was associated with higher exposure than grade-2 fixation (1.95cGycm2) (p=0.048). Fractures of the wrist or forearm necessitating metalwork fixation resulted in higher exposure than those requiring manipulation only (both p<0.001). For procedures undertaken by trainees, trainee seniority (between year-5 and year-8 and clinical fellow, p≥0.24) did not affect the DAP significantly. Conclusions The spectrum of radiation exposures for common procedures utilised in the management of paediatric upper limb trauma were quantified. These findings will be useful to surgeons auditing their practice and quantifying radiation-associated risks to patients. Our data may serve as a basis for implementing protocols designed to improve patient safety.


2015 ◽  
Vol 8 (10) ◽  
pp. 1052-1055 ◽  
Author(s):  
Diogo C Haussen ◽  
Imramsjah Martijn John Van Der Bom ◽  
Raul G Nogueira

Background and purposeWe aimed to compare the performance of the ZeroGravity (ZG) system (radiation protection system composed by a suspended lead suit) against the use of standard protection (lead apron (LA), thyroid shield, lead eyeglasses, table skirts, and ceiling suspended shield) in neuroangiography procedures.Materials and methodsRadiation exposure data were prospectively collected in consecutive neuroendovascular procedures between December 2014 and February 2015. Operator No 1 was assigned to the use of an LA (plus lead glasses, thyroid shield, and a 1 mm hanging shield at the groin) while operator No 2 utilized the ZG system. Dosimeters were used to measure peak skin dose for the head, thyroid, and left foot.ResultsThe two operators performed a total of 122 procedures during the study period. The ZG operator was more commonly the primary operator compared with the LA operator (85% vs 71%; p=0.04). The mean anterior-posterior (AP), lateral, and cumulative dose area product (DAP) radiation exposure as well as the mean fluoroscopy time were not statistically different between the operators’ cases. The peak skin dose to the head of the operator with LA was 2.1 times higher (3380 vs 1600 μSv), while the thyroid was 13.9 (4460 vs 320 μSv), the mediastinum infinitely (520 vs 0 μSv), and the foot 3.3 times higher (4870 vs 1470 μSv) compared with the ZG operator, leading to an overall accumulated dose 4 times higher. The ratio of cumulative operator received dose/total cumulative DAP was 2.5 higher on the LA operator.ConclusionsThe ZG radiation protection system leads to substantially lower radiation exposure to the operator in neurointerventional procedures. However, substantial exposure may still occur at the level of the lens and thyroid to justify additional protection.


Sign in / Sign up

Export Citation Format

Share Document