scholarly journals Poly(methyl methacrylate) bone cement composited with mineralized collagen for osteoporotic vertebral compression fractures in extremely old patients

2020 ◽  
Vol 7 (1) ◽  
pp. 29-34
Author(s):  
Kefeng Luo ◽  
Guoqiang Jiang ◽  
Jinjin Zhu ◽  
Bin Lu ◽  
Jiye Lu ◽  
...  

Abstract To examine the clinical effects of a new bone cement composed of poly(methyl methacrylate) (PMMA) and mineralized collagen (MC) compared with pure PMMA bone cement in treating osteoporotic vertebral compression fractures (OVCFs) in patients aged over 80. In all, 32 cases using pure PMMA bone cement and 31 cases using MC-modified PMMA (MC-PMMA) bone cement for OVCFs between June 2014 and March 2016 were screened as PMMA group and MC-PMMA group, respectively, with an average age of over 80. The operation duration, intraoperative blood loss, hospital stay, oswestry disability index (ODI), visual analogue scale (VAS), anterior vertebral height (AVH), intermediate vertebral height (IVH) and posterior vertebral height (PVH) of injured vertebrae, vertebral computed tomography value, re-fracture rate of adjacent vertebrae, correction rate of spinal kyphotic angle and wedge-shaped vertebra angle and surgical complications were compared between the two groups. In the early post-operative period, the VAS, ODI, AVH and IVH in MC-PMMA group were comparable to those in the traditional PMMA group. Moreover, the MC-PMMA group showed better effects compared with the PMMA group 12 months after surgery. Thus, this new bone cement has superior clinic effects in the long term.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jinjin Zhu ◽  
Shuhui Yang ◽  
Yute Yang ◽  
Teng Yao ◽  
Gang Liu ◽  
...  

Abstract Kümmell disease (KD) causes serious vertebral body collapse in patients. However, only a few case reports have been conducted and the number of patients with KD investigated was limited. Additionally, the frequently used poly(methyl methacrylate) (PMMA) bone cement for KD is limited by excessive modulus and poor biocompatibility. Herein, we aimed to modify PMMA bone cement with mineralized collagen (MC), and compare the clinical effects, image performance and finite element analysis between the modified bone cement and PMMA bone cement for the treatment of phase I and II KD. Thirty-nine KD patients treated with PMMA bone cement and 40 KD patients treated with MC-modified PMMA bone cement from June 2015 to March 2017 were retrospectively analyzed. The surgical procedure, intraoperative blood loss, hospital stay and complications were compared between different groups. Visual analog scale, Oswestry disability index, anterior vertebral height, posterior vertebral height, computed tomography value, adjacent vertebral re-fracture, Cobb angle and wedge-shaped correction angle were evaluated. Additionally, the representative sample was selected for finite element analysis. We found that the MC-modified PMMA bone cement could achieve the same effect as that of PMMA bone cement and was associated with better vertebral height restoration in the long term.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2027
Author(s):  
Jaime Orellana ◽  
Ynés Yohana Pastor ◽  
Fernando Calle ◽  
José Ygnacio Pastor

Bone cement, frequently based on poly (methyl methacrylate), is commonly used in different arthroplasty surgical procedures and its use is essential for prosthesis fixation. However, its manufacturing process reaches high temperatures (up to 120 °C), producing necrosis in the patients' surrounding tissues. To help avoid this problem, the addition of graphene could delay the polymerisation of the methyl methacrylate as it could, simultaneously, favour the optimisation of the composite material's properties. In this work, we address the effect of different percentages of highly reduced graphene oxide with different wt.% (0.10, 0.50, and 1.00) and surface densities (150, 300, 500, and 750 m2/g) on the physical, mechanical, and thermal properties of commercial poly (methyl methacrylate)-based bone cement and its processing. It was noted that a lower sintering temperature was achieved with this addition, making it less harmful to use in surgery and reducing its adverse effects. In contrast, the variation of the density of the materials did not introduce significant changes, which indicates that the addition of highly reduced graphene oxide would not significantly increase bone porosity. Lastly, the mechanical properties (strength, elastic modulus, and fracture toughness) were reduced by almost 20%. Nevertheless, their typical values are high enough that these new materials could still fulfil their structural function. In conclusion, this paper presents a way to control the sintering temperature, without significant degradation of the mechanical performance, by adding highly reduced graphene oxide so that local necrosis of bone cement based on poly (methyl methacrylate) used in surgery is avoided.


2021 ◽  
Author(s):  
Binbin Tang ◽  
Kang Liu ◽  
Lianguo Wu ◽  
Xiaolin Shi

Abstract Purpose Insignificant pain relief (IPR) in short period after vertebroplasty is common, which often disturb doctors and affect patients Therefore, we reviewed systematically relative articles and attempted to get meaningful evidence on factors and strategies for IPR.Methods PubMed, Web of Science, Embase, CNKI, WanFang, and VIP were searched for literatures treating the osteoporotic vertebral compression fractures (OVCFs) with vertebroplasty and assessing the clinical efficacy.Results 817 references were electronically retrieved, 81 full-text papers were screened and 41 studies were included. Twenty-two trials presented factors on IPR, mainly including bone cement related, operation related and patient-related factors. Nineteen studies showed strategies on residual pain, including improving osteoporosis, reforming surgical operation and add other therapies. 16 prospective, 20 retrospective and 5 meta-analyses consisted the systematic review. The date from included studies point to different results, with less risk of bias, were needed to clarify the factors and strategies for residual pain.Conclusions Bone cement distribution and operation error are highly related to the post-vertebroplasty residual pain. Many therapeutic methods could improve pain and rehabilitate function but lacking more high-level evidence due to the insufficient trails.


2019 ◽  
Vol 48 (2) ◽  
pp. 030006051983508
Author(s):  
Guan Shi ◽  
Fei Feng ◽  
Chen Hao ◽  
Jia Pu ◽  
Bao Li ◽  
...  

Percutaneous vertebroplasty (PVP) is a minimally invasive treatment that has been widely used for the treatment of osteoporotic vertebral compression fractures and vertebral tumors. However, the maximum number of vertebral segments treated in a single PVP remains controversial. Furthermore, PVP may cause complications, including cement leakage, pulmonary embolism, bone cement toxicity, and spinal nerve-puncture injury. We report the rare case of a patient who underwent multilevel PVP for vertebral metastases, with no bone cement leakage or spinal cord injury, but who developed temporary paraparesis.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Hongyu Wei ◽  
Chunke Dong ◽  
Yuting Zhu ◽  
Haoning Ma

Abstract Background A systematic review and meta-analysis to assess the pros and cons of percutaneous vertebroplasty (PVP) versus kyphoplasty (PKP) for osteoporotic vertebral compression fractures (OVCFs) with intravertebral cleft (IVC) including all available evidence from controlled trials. Methods Databases including Pubmed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Wanfang Data were searched to identify relevant studies comparing PVP and PKP for OVCFs with IVC. The outcomes mainly included visual analog scale (VAS), Oswestry Disability Index (ODI), local kyphotic angle (LKA), rate of vertebral height (VH%), and adverse events. Results Nine studies enrolling 688 patients were eligible for meta-analysis. The results indicated no significant differences between the two groups in the short-and long-term VAS, ODI, LKA, or VH% (P > 0.05). Compared with PVP, PKP was associated with significantly longer operation time (P < 0.05), higher cost (P > 0.05), and more injected cement volume (P < 0.05). In terms of adverse events, PKP has a lower risk of cement leakage (P < 0.05), while with no significant difference in adjacent-level fracture rates (P > 0.05). Conclusion The two procedures have similar short- and long-term pain relief, functional recovery, local kyphosis correction, and vertebral height maintenance in OVCFs with IVC. PKP is superior to PVP for the injected cement volume, and lower cement leakage rate, however, with longer operation time, more fluoroscopy times, and higher cost. Further randomized controlled trials (RCTs) should be conducted to confirm these results.


Sign in / Sign up

Export Citation Format

Share Document