Bond Risk Premiums with Machine Learning

Author(s):  
Daniele Bianchi ◽  
Matthias Büchner ◽  
Andrea Tamoni

Abstract We show that machine learning methods, in particular, extreme trees and neural networks (NNs), provide strong statistical evidence in favor of bond return predictability. NN forecasts based on macroeconomic and yield information translate into economic gains that are larger than those obtained using yields alone. Interestingly, the nature of unspanned factors changes along the yield curve: stock- and labor-market-related variables are more relevant for short-term maturities, whereas output and income variables matter more for longer maturities. Finally, NN forecasts correlate with proxies for time-varying risk aversion and uncertainty, lending support to models featuring both channels.

Author(s):  
Daniele Bianchi ◽  
Matthias Büchner ◽  
Tobias Hoogteijling ◽  
Andrea Tamoni

Abstract In this note we revisit the empirical results in Bianchi, Büchner, and Tamoni (2020) after correcting for using information not available at the time the forecast was made. Although we note a decrease in out-of-sample $R^2$, the revised analysis confirms that bond excess return predictability from neural networks remains statistically and economically significant.


2020 ◽  
Vol 27 (3) ◽  
pp. 373-389 ◽  
Author(s):  
Ashesh Chattopadhyay ◽  
Pedram Hassanzadeh ◽  
Devika Subramanian

Abstract. In this paper, the performance of three machine-learning methods for predicting short-term evolution and for reproducing the long-term statistics of a multiscale spatiotemporal Lorenz 96 system is examined. The methods are an echo state network (ESN, which is a type of reservoir computing; hereafter RC–ESN), a deep feed-forward artificial neural network (ANN), and a recurrent neural network (RNN) with long short-term memory (LSTM; hereafter RNN–LSTM). This Lorenz 96 system has three tiers of nonlinearly interacting variables representing slow/large-scale (X), intermediate (Y), and fast/small-scale (Z) processes. For training or testing, only X is available; Y and Z are never known or used. We show that RC–ESN substantially outperforms ANN and RNN–LSTM for short-term predictions, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver's time steps equivalent to several Lyapunov timescales. The RNN–LSTM outperforms ANN, and both methods show some prediction skills too. Furthermore, even after losing the trajectory, data predicted by RC–ESN and RNN–LSTM have probability density functions (pdf's) that closely match the true pdf – even at the tails. The pdf of the data predicted using ANN, however, deviates from the true pdf. Implications, caveats, and applications to data-driven and data-assisted surrogate modeling of complex nonlinear dynamical systems, such as weather and climate, are discussed.


2018 ◽  
Vol 29 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Mirac Baris Usta ◽  
Koray Karabekiroglu ◽  
Berkan Sahin ◽  
Muazzez Aydin ◽  
Abdullah Bozkurt ◽  
...  

2020 ◽  
pp. 49-57
Author(s):  
IURI ANANIASHVILI ◽  
LEVAN GAPRINDASHVILI

. In this article we present forecasts of the spread of COVID-19 virus, obtained by econometric and machine learning methods. Furthermore, by employing modelling method, we estimate effectiveness of preventive measures implemented by the government. Each of the models discussed in this article is modelling different characteristics of the COVID-19 epidemic’s trajectory: peak and end date, number of daily infections over different forecasting horizons, total number of infection cases. All these provide quite clear picture to the interested reader of the future threats posed by COVID-19. In terms of existing models and data, our research indicates that phenomenological models do well in forecasting the trend, duration and total infections of the COVID- 19 epidemic, but make serious mistakes in forecasting the number of daily infections. Machine learning models, deliver more accurate short –term forecast of daily infections, but due to data limitations, they struggle to make long-term forecasts. Compartmental models are the best choice for modelling the measures implemented by the government for preventing the spread of COVID-19 and determining optimal level of restrictions. These models show that until achieving herd immunity (i.e. without any epidemiological or government implemented measures), approximate number of people infected with COVID-19 would be 3 million, but due to preventive measures, expected total number of infections has reduced to several thousand (1555-3189) people. This unequivocally indicates the effectiveness of the preventive measures.


2021 ◽  
Author(s):  
Chulwoo Han

This paper documents the bimodality of momentum stocks: both high- and low-momentum stocks have nontrivial probabilities for both high and low returns. The bimodality makes the momentum strategy fundamentally risky and can cause a large loss. To alleviate the bimodality and improve return predictability, this paper develops a novel cross-sectional prediction model via machine learning. By reclassifying stocks based on their predicted financial performance, the model significantly outperforms off-the-shelf machine learning models. Tested on the U.S. market, a value-weighted long-short portfolio earns a monthly alpha of 2.4% (t-statistic = 6.63) when regressed against the Fama–French five factors plus the momentum and short-term reversal factors. This paper was accepted by Kay Giesecke, finance.


Author(s):  
Martin M Andreasen ◽  
Tom Engsted ◽  
Stig V Møller ◽  
Magnus Sander

Abstract This paper uncovers that expected excess bond returns display a positive correlation with the slope of the yield curve (i.e., yield spread) in expansions but a negative correlation in recessions. We use a macro-finance term structure model with different market prices of risk in expansions and recessions to show that a very accommodating monetary policy in recessions is a key driver of this switch in return predictability.


Sign in / Sign up

Export Citation Format

Share Document