scholarly journals Stereotypes bias face perception via orbitofrontal–fusiform cortical interaction

Author(s):  
Benjamin O Barnett ◽  
Jeffrey A Brooks ◽  
Jonathan B Freeman

Abstract Previous research has shown that social-conceptual associations, such as stereotypes, can influence the visual representation of faces and neural pattern responses in ventral temporal cortex (VTC) regions, such as the fusiform gyrus (FG). Current models suggest that this social-conceptual impact requires medial orbitofrontal cortex (mOFC) feedback signals during perception. Backward masking can disrupt such signals, as it is a technique known to reduce functional connectivity between VTC regions and regions outside VTC. During functional magnetic resonance imaging (fMRI), subjects passively viewed masked and unmasked faces, and following the scan, perceptual biases and stereotypical associations were assessed. Multi-voxel representations of faces across the VTC, and in the FG and mOFC, reflected stereotypically biased perceptions when faces were unmasked, but this effect was abolished when faces were masked. However, the VTC still retained the ability to process masked faces and was sensitive to their categorical distinctions. Functional connectivity analyses confirmed that masking disrupted mOFC–FG connectivity, which predicted a reduced impact of stereotypical associations in the FG. Taken together, our findings suggest that the biasing of face representations in line with stereotypical associations does not arise from intrinsic processing within the VTC and FG alone, but instead it depends in part on top-down feedback from the mOFC during perception.

2018 ◽  
Author(s):  
Tracy H. Wang ◽  
Katerina Placek ◽  
Jarrod A. Lewis-Peacock

ABSTRACTThe intention to forget can produce long-lasting effects. This ability has been linked to suppression of both rehearsal and retrieval of unwanted memories – processes that are mediated by prefrontal cortex and hippocampus. Here, we describe an alternative account of deliberate forgetting in which the intention to forget is associated with increased engagement with the unwanted information. We used pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a task in which participants viewed a series of pictures and were instructed to remember or forget each one. Pictures followed by a forget instruction elicited higher levels of processing in ventral temporal cortex compared to those followed by a remember instruction. This boost in processing led to more forgetting, particularly for items that showed moderate (vs. weak or strong) activation. This result is consistent with the non-monotonic plasticity hypothesis, which predicts weakening and forgetting of memories that are moderately activated.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ke Song ◽  
Yong Wang ◽  
Mei-Xia Ren ◽  
Jiao Li ◽  
Ting Su ◽  
...  

Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON).Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs.Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs.Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.


Sign in / Sign up

Export Citation Format

Share Document