scholarly journals 0305 Grey Matter Volumetric Differences are Predictive of Attentional Lapses During Sleep Deprivation

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A115-A115
Author(s):  
J R Vanuk ◽  
A C Raikes ◽  
N S Dailey ◽  
M A Grandner ◽  
W D Killgore

Abstract Introduction Inter-individual differences in resistance to cognitive effects of sleep loss are well established and extend from basic vigilance capacities to more nuanced emotional processing. Neurobiological markers related to gray matter volumetric differences associated with resilience to sleep deprivation (SD) have yet to be explored. We collected anatomical magnetic resonance imaging on well-rested healthy adults and correlated gray matter volume (GMV) with the number of lapses on a psychomotor vigilance test (PVT) subsequently occurring over 29-hours of SD. Methods 45 individuals (23 males; mean age: 25.36 ± 5.62y) completed a baseline neuroimaging session while well-rested and returned 2-4 days later to complete 29h of SD. The PVT was administered at one-hour intervals across SD. High-resolution T1 structural scans were used for a volume-based morphometric analysis (CAT12). Images were segmented and normalized following automated procedures and smoothed at 8 mm FWHM. Regions of interest were constrained to the anterior cingulate and ventral frontal areas of the cortex. GM volume was correlated with the total number of lapses across all PVT administrations, after controlling for age, sex, and total intracranial volume. Results Total number of lapses positively correlated with GMV in two clusters comprised of areas in the anterior cingulate cortex (FWE corrected, p = 0.046), as well as the opercular and triangular parts of the inferior frontal gyrus (FWE corrected, p = 0.006). Conclusion Susceptibility to attentional lapses was predicted by greater gray matter volume in the ventrolateral prefrontal and anterior cingulate cortices. Current findings support that individual differences in attentional resiliency during SD may be, in part, due to differences in gray matter volume within cortical areas previously shown to be functionally affected by sleep loss. Support DARPA (12-12-11-YFA11-FP-029)

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A116-A116
Author(s):  
C E Meinhausen ◽  
J R Vanuk ◽  
M A Grandner ◽  
W D Killgore

Abstract Introduction Sleep deprivation has often been associated with decreased cognitive control, including deficits in the ability to sustain attention. Psychomotor vigilance speed slows following a period of fatigue, and can lead to disastrous results in daily life. In order to determine the brain areas correlated with reduced psychomotor vigilance speed, as a result of diminished sleep, a voxel-based morphometry analysis was performed prior to a period of monitored sleep deprivation. The mean speed of response time during the final 17 hours of a 29-hour sleep deprivation was then measured with the Psychomotor Vigilance Test (PVT), a reaction-timed task that measures the speed participants respond to a visual stimulus. Methods 45 healthy individuals (male=23 female=22) between the ages of 20-43 years (M=25.4 SD=5.6) participated in the study. Structural neuroimaging data were collected using a T3 magnetic resonance imaging scanner following a typical night’s sleep. Mean PVT speed was monitored with an hourly 10-minute PVT assessment during a monitored overnight sleep deprivation session. Speed was defined as the reciprocal of reaction time (1/RT). Results PVT speed was negatively correlated with grey matter volume (P<.05 FWE-corrected) in the prefrontal cortex, specifically the right posterior inferior frontal gyrus (p=.030; MNI coordinates = 36, 12, 26). Conclusion Our findings indicate that gray matter within the right posterior inferior frontal gyrus is greater in individuals who are more vulnerable to slowing of PVT responses during an overnight period of sleep deprivation. These findings suggest that inter-individual differences in the ability to sustain psychomotor vigilance during sleep loss may be related to increased gray matter in the right lateral prefrontal cortex and could have implications for understanding the neurobiological substrates of vulnerability and resilience to sleep loss. Support  


2018 ◽  
Vol 13 (5) ◽  
pp. 1468-1473 ◽  
Author(s):  
Xiaowan Wang ◽  
Chris Baeken ◽  
Mengxia Fang ◽  
Jiang Qiu ◽  
Hong Chen ◽  
...  

2020 ◽  
Author(s):  
Joshua M. Carlson ◽  
Lin Fang

AbstractIn a sample of highly anxious individuals, the relationship between gray matter volume brain morphology and attentional bias to threat was assessed. Participants performed a dot-probe task of attentional bias to threat and gray matter volume was acquired from whole brain structural T1-weighted MRI scans. The results replicate previous findings in unselected samples that elevated attentional bias to threat is linked to greater gray matter volume in the anterior cingulate cortex, middle frontal gyrus, and striatum. In addition, we provide novel evidence that elevated attentional bias to threat is associated with greater gray matter volume in the right posterior parietal cortex, cerebellum, and other distributed regions. Lastly, exploratory analyses provide initial evidence that distinct sub-regions of the right posterior parietal cortex may contribute to attentional bias in a sex-specific manner. Our results illuminate how differences in gray matter volume morphology relate to attentional bias to threat in anxious individuals. This knowledge could inform neurocognitive models of anxiety-related attentional bias to threat and targets of neuroplasticity in anxiety interventions such as attention bias modification.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013215
Author(s):  
Tiing Yee Siow ◽  
Cheng Hong Toh ◽  
Jung-Lung Hsu ◽  
Geng-Hao Liu ◽  
Shwu-Hua Lee ◽  
...  

Background and Objectives:The glymphatic system, which is robustly enabled during some stages of sleep, is a fluid-transport pathway that clears cerebral waste products. Most contemporary knowledge regarding glymphatic system is inferred from rodent experiments and human research is limited. The objective of the research is to explore the associations between human glymphatic function, sleep, neuropsychological performances, and cerebral gray matter volumes.Methods:This cross-sectional study included individuals 60 years or older who had participated in the Integrating Systemic Data of Geriatric Medicine to Explore the Solution for Health Aging study between September 2019 and October 2020. Community-dwelling older adults were enrolled at 2 different sites. Participants with dementia, major depressive disorders, and other major organ system abnormalities were excluded. Sleep profile was accessed using questionnaires and polysomnography. Administered neuropsychological test batteries included Everyday Cognition (ECog) and the Consortium to Establish a Registry for Alzheimer’s Disease Neuropsychological Battery (CERAD-NB). Gray matter volumes were estimated based on magnetic resonance imaging (MRI). Diffusion tensor imaging-analysis along the perivascular space (DTI-ALPS) index was used as the MRI marker of glymphatic function.Results:A total of 84 participants (mean [SD] age, 73.3 [7.1] years, 47 [56.0%] women) were analyzed. Multivariate linear regression model determined that age (unstandardized β, -0.0025 [SE, 0.0001]; P = 0.02), N2 sleep duration (unstandardized β, 0.0002 [SE, 0.0001]; P = 0.04), and the apnea-hypopnea index (unstandardized β, -0.0011 [SE, 0.0005]; P = 0.03) were independently associated with DTI-ALPS. Higher DTI-ALPS was associated with better ECog language scores (unstandardized β, -0.59 [SE, 0.28]; P = 0.04) and better CERAD-NB word-list-learning delayed recall subtest scores (unstandardized β, 6.17 [SE, 2.31]; P = 0.009) after co-varying for age and education. Higher DTI-ALPS was also associated with higher gray matter volume (unstandardized β, 107.00 [SE, 43.65]; P = 0.02) after controlling for age, gender, and total intracranial volume.Discussion:Significant associations were identified between glymphatic function and sleep stressing the importance of sleep for brain health. This study also revealed associations between DTI-ALPS, neuropsychological performances, and cerebral gray matter volumes suggesting the potential of DTI-ALPS as a biomarker for cognitive disorders.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Lotze ◽  
M. Domin ◽  
C. O. Schmidt ◽  
N. Hosten ◽  
H. J. Grabe ◽  
...  

Abstract Income and education are both elements of a person’s socioeconomic status, which is predictive of a broad range of life outcomes. The brain’s gray matter volume (GMV) is influenced by socioeconomic status and mediators related to an unhealthy life style. We here investigated two independent general population samples comprising 2838 participants (all investigated with the same MRI-scanner) with regard to the association of indicators of the socioeconomic status and gray matter volume. Voxel-based morphometry without prior hypotheses revealed that years of education were positively associated with GMV in the anterior cingulate cortex and net-equivalent income with gray matter volume in the hippocampus/amygdala region. Analyses of possible mediators (alcohol, cigarettes, body mass index (BMI), stress) revealed that the relationship between income and GMV in the hippocampus/amygdala region was partly mediated by self-reported stressors, and the association of years of education with GMV in the anterior cingulate cortex by BMI. These results corrected for whole brain effects (and therefore not restricted to certain brain areas) do now offer possibilities for more detailed hypotheses-driven approaches.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A119-A119
Author(s):  
I Anlap ◽  
E Taylor ◽  
M A Grandner ◽  
W D Killgore

Abstract Introduction Vulnerability to sleep deprivation (SD) has been attributed to inter-individual trait-like differences in the ability to sustain vigilance and subjective alertness, which may have distinct neurobiological substrates. We have previously shown that reduced suppression of the Default Mode Network (DMN) during a cognitive task was predictive of global vulnerability to SD. However, little is known about vulnerability to mood decrements during SD and the underlying neurobiological mechanisms. Using voxel-based morphometry (VBM), we assessed structural differences in gray matter volume (GMV) of a region of the anterior DMN, the medial prefrontal cortex and its association with self-reported mood during 29 hours of SD. Methods 45 healthy participants (23 male; Ages 20-43) underwent 3T structural magnetic resonance imaging (MRI). Within 4 days, participants underwent an overnight SD session (29 hours awake total) which included hourly mood assessments with several visual analog mood scales (VAMS) assessing positive and negative affect. Hourly VAMS data were converted into a comparative metric of percent worsening of mood scores from 19:00 until noon the next day. These scores were averaged to determine a “mood resilience” score, with higher scores indicating greater mood sustainment. Using SPM12, the mean mood resilience scores were correlated with whole-brain gray matter volume, restricted to the medial prefrontal cortex, p<.05, FWE corrected, with a cluster threshold of 137 voxels. Results Overnight mood resilience was significantly correlated with greater grey matter volume in right rostral medial prefrontal cortex (p<.05, corrected; k=137). Conclusion Individuals with greater gray matter volume within a circumscribed region of the right medial prefrontal cortex demonstrated greater resilience to mood degradation over 29 hours of continuous wakefulness. This same region of the brain has been shown to be critical for the passive maintenance of emotions. We speculate that greater GMV could protect against mood decline by better sustaining emotional state during SD. Support Defense Advanced Research Projects Agency Young Faculty Award: DARPA-12-12-11-YFA11-FP-029


2014 ◽  
Vol 4 ◽  
pp. 336-342 ◽  
Author(s):  
Justine Nienke Pannekoek ◽  
Steven J.A. van der Werff ◽  
Bianca G. van den Bulk ◽  
Natasja D.J. van Lang ◽  
Serge A.R.B. Rombouts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document