scholarly journals Seasonal variation in sleep homeostasis in migratory geese: a rebound of NREM sleep following sleep deprivation in summer but not in winter

SLEEP ◽  
2020 ◽  
Author(s):  
Sjoerd J van Hasselt ◽  
Gert-Jan Mekenkamp ◽  
Jan Komdeur ◽  
Giancarlo Allocca ◽  
Alexei L Vyssotski ◽  
...  

Abstract Sleep is a behavioral and physiological state that is thought to serve important functions. Many animals go through phases in the annual cycle where sleep time might be limited, for example, during the migration and breeding phases. This leads to the question whether there are seasonal changes in sleep homeostasis. Using electroencephalogram (EEG) data loggers, we measured sleep in summer and winter in 13 barnacle geese (Branta leucopsis) under semi-natural conditions. During both seasons, we examined the homeostatic regulation of sleep by depriving the birds of sleep for 4 and 8 h after sunset. In winter, barnacle geese showed a clear diurnal rhythm in sleep and wakefulness. In summer, this rhythm was less pronounced, with sleep being spread out over the 24-h cycle. On average, the geese slept 1.5 h less per day in summer compared with winter. In both seasons, the amount of NREM sleep was additionally affected by the lunar cycle, with 2 h NREM sleep less during full moon compared to new moon. During summer, the geese responded to 4 and 8 h of sleep deprivation with a compensatory increase in NREM sleep time. In winter, this homeostatic response was absent. Overall, sleep deprivation only resulted in minor changes in the spectral composition of the sleep EEG. In conclusion, barnacle geese display season-dependent homeostatic regulation of sleep. These results demonstrate that sleep homeostasis is not a rigid phenomenon and suggest that some species may tolerate sleep loss under certain conditions or during certain periods of the year.

SLEEP ◽  
2019 ◽  
Vol 43 (6) ◽  
Author(s):  
Sjoerd J van Hasselt ◽  
Maria Rusche ◽  
Alexei L Vyssotski ◽  
Simon Verhulst ◽  
Niels C Rattenborg ◽  
...  

Abstract Most of our knowledge about the regulation and function of sleep is based on studies in a restricted number of mammalian species, particularly nocturnal rodents. Hence, there is still much to learn from comparative studies in other species. Birds are interesting because they appear to share key aspects of sleep with mammals, including the presence of two different forms of sleep, i.e. non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. We examined sleep architecture and sleep homeostasis in the European starling, using miniature dataloggers for electroencephalogram (EEG) recordings. Under controlled laboratory conditions with a 12:12 h light–dark cycle, the birds displayed a pronounced daily rhythm in sleep and wakefulness with most sleep occurring during the dark phase. Sleep mainly consisted of NREM sleep. In fact, the amount of REM sleep added up to only 1~2% of total sleep time. Animals were subjected to 4 or 8 h sleep deprivation to assess sleep homeostatic responses. Sleep deprivation induced changes in subsequent NREM sleep EEG spectral qualities for several hours, with increased spectral power from 1.17 Hz up to at least 25 Hz. In contrast, power below 1.17 Hz was decreased after sleep deprivation. Sleep deprivation also resulted in a small compensatory increase in NREM sleep time the next day. Changes in EEG spectral power and sleep time were largely similar after 4 and 8 h sleep deprivation. REM sleep was not noticeably compensated after sleep deprivation. In conclusion, starlings display signs of NREM sleep homeostasis but the results do not support the notion of important REM sleep functions.


1999 ◽  
Vol 276 (2) ◽  
pp. R522-R529 ◽  
Author(s):  
Jennie E. Larkin ◽  
H. Craig Heller

Electroencephalographic slow-wave activity (SWA) in non-rapid eye movement (NREM) sleep is directly related to prior sleep/wake history, with high levels of SWA following extended periods of wake. Therefore, SWA has been thought to reflect the level of accumulated sleep need. The discovery that euthermic intervals between hibernation bouts are spent primarily in sleep and that this sleep is characterized by high and monotonically declining SWA has led to speculation that sleep homeostasis may play a fundamental role in the regulation of the timing of bouts of hibernation and periodic arousals to euthermia. It was proposed that because the SWA profile seen after arousal from hibernation is strikingly similar to what is seen in nonhibernating mammals after extended periods of wakefulness, that hibernating mammals may arouse from hibernation with significant accumulated sleep need. This sleep need may accumulate during hibernation because the low brain temperatures during hibernation may not be compatible with sleep restorative processes. In the present study, golden-mantled ground squirrels were sleep deprived during the first 4 h of interbout euthermia by injection of caffeine (20 mg/kg ip). We predicted that if the SWA peaks after bouts of hibernation reflected a homeostatic response to an accumulated sleep need, sleep deprivation should simply have displaced and possibly augmented the SWA to subsequent recovery sleep. Instead we found that after caffeine-induced sleep deprivation of animals just aroused from hibernation, the anticipated high SWA typical of recovery sleep did not occur. Similar results were found in a study that induced sleep deprivation by gentle handling (19). These findings indicate that the SWA peak immediately after hibernation does not represent homeostatic regulation of NREM sleep, as it normally does after prolonged wakefulness during euthermia, but instead may reflect some other neurological process in the recovery of brain function from an extended period at low temperature.


SLEEP ◽  
2019 ◽  
Vol 42 (5) ◽  
Author(s):  
Xiao Yu ◽  
Ying Ma ◽  
Edward C Harding ◽  
Raquel Yustos ◽  
Alexei L Vyssotski ◽  
...  

Abstract Acute chemogenetic inhibition of histamine (HA) neurons in adult mice induced nonrapid eye movement (NREM) sleep with an increased delta power. By contrast, selective genetic lesioning of HA neurons with caspase in adult mice exhibited a normal sleep–wake cycle overall, except at the diurnal start of the lights-off period, when they remained sleepier. The amount of time spent in NREM sleep and in the wake state in mice with lesioned HA neurons was unchanged over 24 hr, but the sleep–wake cycle was more fragmented. Both the delayed increase in wakefulness at the start of the night and the sleep–wake fragmentation are similar phenotypes to histidine decarboxylase knockout mice, which cannot synthesize HA. Chronic loss of HA neurons did not affect sleep homeostasis after sleep deprivation. However, the chronic loss of HA neurons or chemogenetic inhibition of HA neurons did notably reduce the ability of the wake-promoting compound modafinil to sustain wakefulness. Thus, part of modafinil’s wake-promoting actions arise through the HA system.


2019 ◽  
Author(s):  
Ying Ma ◽  
Giulia Miracca ◽  
Xiao Yu ◽  
Edward C. Harding ◽  
Andawei Miao ◽  
...  

AbstractSleep deprivation induces a characteristic rebound in NREM sleep accompanied by an immediate increase in the power of delta (0.5 - 4 Hz) oscillations, proportional to the prior time awake. To test the idea that galanin neurons in the mouse lateral preoptic hypothalamus (LPO) regulate this sleep homeostasis, they were selectively genetically ablated. The baseline sleep architecture of LPO-ΔGal mice became heavily fragmented, their average core body temperature permanently increased (by about 2°C) and the diurnal variations in body temperature across the sleep-wake cycle also markedly increased. Additionally, LPO-ΔGal mice showed a striking spike in body temperature and increase in wakefulness at a time (ZT24) when control mice were experiencing the opposite - a decrease in body temperature and becoming maximally sleepy (start of “lights on”). After sleep deprivation sleep homeostasis was largely abolished in LPO-ΔGal mice: the characteristic increase in the delta power of NREM sleep following sleep deprivation was absent, suggesting that LPO galanin neurons track the time spent awake. Moreover, the amount of recovery sleep was substantially reduced over the following hours. We also found that the α2 adrenergic agonist dexmedetomidine, used for long-term sedation during intensive care, requires LPO galanin neurons to induce both the NREM-like state with increased delta power and the reduction in body temperature, characteristic features of this drug. This suggests that dexmedetomidine over-activates the natural sleep homeostasis pathway via galanin neurons. Collectively, the results emphasize that NREM sleep and the concurrent reduction in body temperature are entwined at the circuit level.SignificanceCatching up on lost sleep (sleep homeostasis) is a common phenomenon in mammals, but there is no circuit explanation for how this occurs. We have discovered that galanin neurons in the hypothalamus are essential for sleep homeostasis as well as for the control of body temperature. This is the first time that a neuronal cell type has been identified that underlies sleep homeostasis. Moreover, we show that activation of these galanin neurons are also essential for the actions of the α2 adrenergic agonist dexmedetomidine, which induces both hypothermia together with powerful delta oscillations resembling NREM sleep. Thus, sleep homeostasis, temperature control and sedation by α2 adrenergic agonists can all be linked at the circuit level by hypothalamic galanin neurons.


2017 ◽  
Vol 117 (1) ◽  
pp. 327-335 ◽  
Author(s):  
Irma Gvilia ◽  
Natalia Suntsova ◽  
Andrey Kostin ◽  
Anna Kalinchuk ◽  
Dennis McGinty ◽  
...  

Sleep homeostasis in rats undergoes significant maturational changes during postweaning development, but the underlying mechanisms of this process are unknown. In the present study we tested the hypothesis that the maturation of sleep is related to the functional emergence of adenosine (AD) signaling in the brain. We assessed postweaning changes in 1) wake-related elevation of extracellular AD in the basal forebrain (BF) and adjacent lateral preoptic area (LPO), and 2) the responsiveness of median preoptic nucleus (MnPO) sleep-active cells to increasing homeostatic sleep drive. We tested the ability of exogenous AD to augment homeostatic responses to sleep deprivation (SD) in newly weaned rats. In groups of postnatal day (P)22 and P30 rats, we collected dialysate from the BF/LPO during baseline (BSL) wake-sleep, SD, and recovery sleep (RS). HPLC analysis of microdialysis samples revealed that SD in P30 rats results in significant increases in AD levels compared with BSL. P22 rats do not exhibit changes in AD levels in response to SD. We recorded neuronal activity in the MnPO during BSL, SD, and RS at P22/P30. MnPO neurons exhibited adult-like increases in waking neuronal discharge across SD on both P22 and P30, but discharge rates during enforced wake were higher on P30 vs. P22. Central administration of AD (1 nmol) during SD on P22 resulted in increased sleep time and EEG slow-wave activity during RS compared with saline control. Collectively, these findings support the hypothesis that functional reorganization of an adenosinergic mechanism of sleep regulation contributes to the maturation of sleep homeostasis. NEW & NOTEWORTHY Brain mechanisms that regulate the maturation of sleep are understudied. The present study generated first evidence about a potential mechanistic role for adenosine in the maturation of sleep homeostasis. Specifically, we demonstrate that early postweaning development in rats, when homeostatic response to sleep loss become adult like, is characterized by maturational changes in wake-related production/release of adenosine in the brain. Pharmacologically increased adenosine signaling in developing brain facilitates homeostatic responses to sleep deprivation.


1998 ◽  
Vol 275 (1) ◽  
pp. R148-R157 ◽  
Author(s):  
Marcos G. Frank ◽  
Roger Morrissette ◽  
H. Craig Heller

This investigation represents the first systematic study of sleep homeostasis in developing mammals that spans the preweaning and postweaning periods. Neonatal rats from 12 to 24 days of postnatal life ( P12– P24) were anesthetized with Metofane (methoxyflurane) and implanted with miniaturized electroencephalographic (EEG) and electromyographic electrodes. After 48 h of recovery, neonatal rats were sleep deprived for 3 h by either gentle handling or forced locomotion. We find that 3-h sleep deprivation produces dramatically different compensatory responses at different stages of postnatal development. In striking contrast to adult rats, sleep deprivation does not increase slow-wave sleep EEG delta (0.5–4.0 Hz) activity in rats younger than P24. However, P12– P20rats do show evidence of sleep regulation because they show compensatory increases in sleep time and sleep continuity during recovery. In P12 rats, ∼90% of total slow wave sleep time lost during the sleep-deprivation period was recovered during subsequent sleep. A similar recovery of active sleep time was observed in P20– P24rats. These findings suggest not only that sleep is regulated in neonatal rats but that the accumulation and/or discharge of sleep need changes dramatically between the third and fourth postnatal weeks.


2021 ◽  
Author(s):  
Yang Li ◽  
Enxing Zhou ◽  
Yuxiang Liu ◽  
Jianjun Yu ◽  
Jingqun Yang ◽  
...  

Sleep need drives sleep and plays a key role in homeostatic regulation of sleep. So far sleep need can only be inferred by animal behaviors and indicated by electroencephalography (EEG). Here we report that threonine 221 (T221) of the salt inducible kinase 3 (SIK3) was important for the catalytic activity and stability of SIK3. T221 phosphorylation in the mouse brain indicates sleep need: more sleep resulting in less phosphorylation and less sleep more phosphorylation during daily sleep/wake cycle and after sleep deprivation (SD). Sleep need was reduced in SIK3 loss of function (LOF) mutants and by T221 mutation to alanine (T221A). Sleep rebound after SD was also decreased in SIK3 LOF and T221A mutant mice. Other kinases such as SIK1 and SIK2 or other sites in SIK3 do not fulfil criteria to be both an indicator and a controller of sleep need. Our results reveal SIK3 T221 phosphorylation as the first and only chemical modification which indicates and controls sleep need.


2011 ◽  
Vol 114 (2) ◽  
pp. 302-310 ◽  
Author(s):  
Dinesh Pal ◽  
William J. Lipinski ◽  
Amanda J. Walker ◽  
Ashley M. Turner ◽  
George A. Mashour

Background Prolonged propofol administration does not result in signs of sleep deprivation, and propofol anesthesia appears to satisfy the homeostatic need for both rapid eye movement (REM) and non-REM (NREM) sleep. In the current study, the effects of sevoflurane on recovery from total sleep deprivation were investigated. Methods Ten male rats were instrumented for electrophysiologic recordings under three conditions: (1) 36-h ad libitum sleep; (2) 12-h sleep deprivation followed by 24-h ad libitum sleep; and (3) 12-h sleep deprivation, followed by 6-h sevoflurane exposure, followed by 18-h ad libitum sleep. The percentage of waking, NREM sleep, and REM sleep, as well as NREM sleep δ power, were calculated and compared for all three conditions. Results Total sleep deprivation resulted in significantly increased NREM and REM sleep for 12-h postdeprivation. Sevoflurane exposure after deprivation eliminated the homeostatic increase in NREM sleep and produced a significant decrease in the NREM sleep δ power during the postanesthetic period, indicating a complete recovery from the effects of deprivation. However, sevoflurane did not affect the time course of REM sleep recovery, which required 12 h after deprivation and anesthetic exposure. Conclusion Unlike propofol, sevoflurane anesthesia has differential effects on NREM and REM sleep homeostasis. These data confirm the previous hypothesis that inhalational agents do not satisfy the homeostatic need for REM sleep, and that the relationship between sleep and anesthesia is likely to be agent and state specific.


2011 ◽  
Vol 300 (4) ◽  
pp. R885-R894 ◽  
Author(s):  
Irma Gvilia ◽  
Natalia Suntsova ◽  
Bryan Angara ◽  
Dennis McGinty ◽  
Ronald Szymusiak

The present study evaluated the hypothesis that developmental changes in hypothalamic sleep-regulatory neuronal circuits contribute to the maturation of sleep homeostasis in rats during the fourth postnatal week. In a longitudinal study, we quantified electrographic measures of sleep during baseline and in response to sleep deprivation (SD) on postnatal days 21/29 (P21/29) and P22/30 ( experiment 1). During 24-h baseline recordings on P21, total sleep time (TST) during the light and dark phases did not differ significantly. On P29, TST during the light phase was significantly higher than during the dark phase. Mean duration of non-rapid-eye-movement (NREM) sleep bouts was significantly longer on P29 vs. P21, indicating improved sleep consolidation. On both P22 and P30, rats exhibited increased NREM sleep amounts and NREM electroencephalogram delta power during recovery sleep (RS) compared with baseline. Increased NREM sleep bout length during RS was observed only on P30. In experiment 2, we quantified activity of GABAergic neurons in median preoptic nucleus (MnPN) and ventrolateral preoptic area (VLPO) during SD and RS in separate groups of P22 and P30 rats using c-Fos and glutamic acid decarboxylase (GAD) immunohistochemistry. In P22 rats, numbers of Fos+GAD+ neurons in VLPO did not differ among experimental conditions. In P30 rats, Fos+GAD+ counts in VLPO were elevated during RS. MnPN neuronal activity was state-dependent in P22 rats, but Fos+GAD+ cell counts were higher in P30 rats. These findings support the hypothesis that functional emergence of preoptic sleep-regulatory neurons contributes to the maturation of sleep homeostasis in the developing rat brain.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A29-A30
Author(s):  
Michael Goldstein ◽  
Monika Haack ◽  
Janet Mullington

Abstract Introduction Prior research has reported NREM spectral EEG differences between individuals with insomnia and good-sleeper controls, including elevated high-frequency EEG power (beta/gamma bands, ~16-50Hz) and, to a lesser extent, elevations in sleep spindle parameters. However, the mechanisms driving these differences remain unclear. Harmonics have been observed in EEG data as spectral peaks at multiples of a fundamental frequency associated with an event (e.g., for a 14Hz spindle, the 2nd harmonic is expected to be a peak at 28Hz). Thus far, there has been very limited application of this idea of spectral harmonics to sleep spindles, even though these patterns can indeed be seen in some existing literature. We sought to build on this literature to apply spectral harmonic analysis to better understand differences between insomnia and good sleepers. Methods 15 individuals with insomnia disorder (DSM-5 criteria, 13 female, age 18–32 years) and 15 good-sleeper controls (matched for sex, age, and BMI) completed an overnight polysomnography recording in the laboratory and subsequent daytime testing. Insomnia diagnosis was determined by a board-certified sleep specialist, and exclusion criteria included psychiatric history within past 6 months, other sleep disorders, significant medical conditions, and medications with significant effects on inflammation, autonomic function, or other psychotropic effects. Results Consistent with prior studies, we found elevated sleep spindle density and fast sigma power (14-16Hz). Despite no difference in beta or gamma band power when averaged across NREM sleep, time-frequency analysis centered on the peaks of detected spindles revealed a phasic elevation in spectral power surrounding the 28Hz harmonic peak in the insomnia group, especially for spindles coupled with slow waves. We also observed an overall pattern of time-locked delay in the 28Hz harmonic peak, occurring approximately 40 msec after spindle peaks. Furthermore, we observed a 42Hz ‘3rd harmonic’ peak, not yet predicted by the existing modeling work, which was also elevated for insomnia. Conclusion In conjunction with existing mathematical modeling work that has linked sleep spindle harmonic peaks with thalamic relay nuclei as the primary generators of this EEG signature, these findings may enable novel insights into specific thalamocortical mechanisms of insomnia and non-restorative sleep. Support (if any) NIH 5T32HL007901-22


Sign in / Sign up

Export Citation Format

Share Document