scholarly journals Effects of high-protein distillers dried grains on growth performance of nursery pigs

Author(s):  
Henrique S Cemin ◽  
Mike D Tokach ◽  
Steve S Dritz ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
...  

Abstract A total of 300 pigs (DNA 400 × 200, Columbus, NE), initially 11.1 kg, were used in a study to evaluate the effects of increasing amounts of high-protein distillers dried grains (HP DDG) on growth performance and to estimate its energy value relative to corn. Pigs were weaned, placed in pens with 5 pigs each, and fed a common diet for 21 d after weaning. Then, pens were assigned to treatments in a randomized complete block design. There were 5 treatments with 12 replicates per treatment. Treatments consisted of 0, 10, 20, 30, or 40% HP DDG, formulated by changing only the amounts of corn and feed-grade amino acids. Pigs were weighed weekly for 21 d to evaluate average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F). Caloric efficiency was obtained by multiplying ADFI by kcal of net energy (NE) per kg of diet and dividing by ADG. The NE values for corn and soybean meal were obtained from NRC (2012), and initial estimates for HP DDG NE were derived from the Noblet et al. (1994) equation. The energy of HP DDG was estimated based on caloric efficiency relative to the diet without HP DDG. Pigs fed diets with increasing HP DDG had a linear decrease (P < 0.01) in ADG, ADFI, and final body weight. There was a tendency for a quadratic response (P = 0.051) in G:F, with the greatest G:F observed for pigs fed diets with 40% HP DDG. There was a linear reduction (P < 0.05) in caloric efficiency with increasing amounts of HP DDG, indicating the initial NE estimate of HP DDG was underestimated. The use of caloric efficiency to estimate the energy value of HP DDG presents several limitations. This approach assumes that the NE values of corn and soybean meal are accurate and does not take into account possible changes in body composition, which can influence the G:F response as leaner pigs are more efficient. In conclusion, increasing HP DDG in the diet linearly decreased ADG and ADFI. Using caloric efficiency to estimate energy content relative to corn, the HP DDG used in this study was estimated to be 97.3% of the energy value of corn. Direct or indirect calorimetry is needed to confirm this value.

2020 ◽  
Vol 4 (2) ◽  
pp. 694-707
Author(s):  
Henrique S Cemin ◽  
Mike D Tokach ◽  
Steve S Dritz ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
...  

Abstract Four experiments were conducted to determine the effects of increasing soybean meal (SBM) level in diets with or without 25% distillers dried grains with solubles (DDGS) on growth performance of nursery pigs raised in university or commercial facilities. Treatments were arranged in a 2 × 3 factorial with main effects of SBM (27.5%, 32.5%, or 37.5% of the diet) and DDGS (0% or 25% of the diet). A total of 296, 2,502, 4,118, and 711 pigs with initial body weight (BW) of 10.6, 11.7, 12.5, and 12.3 kg were used in Exp. 1, 2, 3, and 4, respectively. There were 10, 16, 13, and 12 replicates per treatment in Exp. 1, 2, 3, and 4, respectively. After weaning, pigs were fed common diets for approximately 21 d. Then, pens of pigs were assigned to treatments in a randomized complete block design with BW as the blocking factor and experimental diets were fed for 21 d. Pigs were weighed and feed disappearance measured to calculate average daily gain (ADG), average daily feed intake (ADFI), gain-to-feed ratio (G:F), and caloric efficiency (CE). Data were analyzed using the GLIMMIX procedure of SAS with block as a random effect and treatment as a fixed effect. Single degree-of-freedom contrasts were constructed to test the linear and quadratic effects of increasing SBM and their interactions with DDGS. Pigs used in all experiments did not undergo major health challenges during the experimental period and due to the low number of mortality and cull events, statistical analysis was not performed on these variables. The average cull rate was 0.7%, 0.5%, 0.2%, and 0%, and the mortality rate was 0.7%, 0.3%, 0.4%, and 0% in Exp. 1–4, respectively. There were interactions (P ≤ 0.039) between SBM and DDGS for G:F and CE in Exp. 2 and for ADG and ADFI in Exp. 3. These were mostly driven by increasing SBM negatively affecting performance in a greater magnitude when diets contained DDGS compared to diets without DDGS. The main effects of DDGS and SBM were more consistently observed across experiments. Pigs fed diets with 25% DDGS had decreased (P ≤ 0.001) ADG and ADFI in all experiments, as well as poorer (P ≤ 0.028) G:F and CE except for Exp. 3. Feeding increasing amounts of SBM generally did not result in any major impact in ADG but consistently improved (linear, P ≤ 0.078) G:F and CE across experiments.


Author(s):  
Zhong-Xing Rao ◽  
Robert D Goodband ◽  
Mike D Tokach ◽  
Steve S Dritz ◽  
Jason C Woodworth ◽  
...  

ABSTRACT A total of 1,890 growing-finishing pigs (PIC; 359 × 1050; initially 27.1 kg) were used in a 124-d growth trial to compare the effects of high-protein distillers dried grains [HPDDG; 39% crude protein (CP)] or conventional distillers dried grains with solubles (DDGS; 29% CP) on growth performance and carcass characteristics. Treatments were arranged in a 2×2 + 1 factorial with main effects of distillers dried grains source (conventional DDGS or HPDDG) and level (15 or 30%). A corn-soybean meal-based diet served as the control and allowed linear and quadratic level effects to be determined within each distillers dried grains (DDG) source. All diets were formulated on an equal standardized ileal digestible (SID) Lys-basis with diets containing HPDDG having less soybean meal than diets with conventional DDGS. Pens were assigned to treatments in a randomized complete block design with initial weight as the blocking factor. There were 27 pigs per pen and 14 pens per treatment. Overall, increasing conventional DDGS decreased (linear, P < 0.04) final body weight (BW), whereas increasing HPDDG tended to decrease (linear, P = 0.065) final BW. The decreased final BW was a result of decreased (linear, P < 0.01) ADG in the grower phase of the study as either DDG source increased. However, there were no differences observed in the finisher phase or overall ADG between pigs fed either DDG source or either inclusion level. Pigs fed HPDDG had decreased (P < 0.001) ADFI and increased (P < 0.001) G:F compared with those fed conventional DDGS. For carcass traits, increasing either conventional DDGS or HPDDG decreased carcass yield and HCW (linear, P < 0.02); however, there were no differences between pigs fed HPDDG or conventional DDGS. Iodine value (IV) increased (linear, P < 0.02) with increasing DDG and was greater (P < 0.001) in pigs fed HPDDG than conventional DDGS. In summary, pigs fed HPDDG had no evidence of difference in overall ADG compared to pigs fed conventional DDGS, but had greater overall G:F. Carcass fat IV was also greater in pigs fed HPDDG compared with pigs fed conventional DDGS. These differences were probably due to the difference in oil content.


2019 ◽  
Vol 3 (2) ◽  
pp. 731-736 ◽  
Author(s):  
Henrique S Cemin ◽  
Jason C Woodworth ◽  
Mike D Tokach ◽  
Steve S Dritz ◽  
Joel M DeRouchey ◽  
...  

Abstract A total of 2,430 pigs (PIC 337 × 1050; Hendersonville, TN; initially 30.1 kg) were used in a 113-d growth trial to determine the effects of increasing dietary Zn on growth performance and carcass characteristics of finishing pigs raised under commercial conditions. Pens of pigs were assigned to be fed one of five dietary treatments in a randomized complete block design. Treatments consisted of 50, 87.5, 125, 162.5, or 200 mg/kg added Zn from Zn hydroxychloride (IntelliBond Z, Micronutrients, Indianapolis, IN). Two identical barns were used for a total of 18 pens per treatment with 27 pigs per pen. Experimental diets were fed in five phases and contained a vitamin-trace mineral premix without added Zn. Pens of pigs were weighed approximately every 2 wk to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F). At the end of the experimental period, pigs were tattooed with a pen identification number and transported to a packing plant to measure hot carcass weight (HCW), backfat, loin depth, and calculated lean percentage. Data were analyzed block nested within barn as a random effect and pen as the experimental unit. From days 0 to 42, pigs fed diets with increasing added Zn had lower (linear, P = 0.043) ADFI and a tendency (P = 0.092) for lower ADG. From days 42 to 113, increasing added Zn resulted in a quadratic response (P = 0.042) for ADFI and a tendency (linear, P = 0.056) for improved G:F. Overall (days 0 to 113), there were tendencies for quadratic responses for ADFI (P = 0.073) and G:F (P = 0.059), with the greatest G:F observed when 125 mg/kg of Zn was fed. Increasing added Zn resulted in a linear increase (P < 0.001) in daily Zn intake. There were no differences (P > 0.10) in overall ADG, final body weight, HCW, backfat, loin depth, lean percentage, mortality, and removal rate. In conclusion, there were no improvements in ADG when feeding beyond 50 mg/kg added Zn; however, providing 125 mg/kg added Zn resulted in the greatest G:F.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 87-88
Author(s):  
Henrique S Cemin ◽  
Mike D Tokach ◽  
Steve S Dritz ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
...  

Abstract Four experiments were conducted to determine the effects of increasing soybean meal (SBM) in diets with or without 25% DDGS on growth performance of nursery pigs. Treatments were arranged in a 2 × 3 factorial with main effects of SBM (27.5, 32.5, or 37.5%) and DDGS (0 or 25%). A total of 296, 2,502, 4,118, and 711 pigs, initially 10.6, 11.7, 12.5, and 12.3 kg, were used and there were 10, 16, 13, and 12 replicates per treatment in Exp. 1, 2, 3, and 4, respectively. Experimental diets were fed for 21 d. Pigs were weighed and feed disappearance measured to calculate ADG, ADFI, G:F, and caloric efficiency (CE). Data were analyzed using the GLIMMIX procedure of SAS with block as random effect and treatment as fixed effect. The average cull rate was 0.7, 0.5, 0.2, and 0% and the mortality rate was 0.7, 0.3, 0.4, and 0% in Exp. 1 to 4, respectively. There were interactions (P ≤ 0.039) between SBM and DDGS for G:F and CE in Exp. 2 and for ADG and ADFI in Exp. 3. These were mostly driven by increasing SBM negatively affecting performance in a greater magnitude when diets contained DDGS compared to diets without DDGS. The main effects of DDGS and SBM were more consistent across experiments. Pigs fed diets with 25% DDGS had decreased (P ≤ 0.001) ADG and ADFI in all experiments as well as poorer (P ≤ 0.028) G:F and CE except for Exp. 3. Feeding increasing amounts of SBM generally did not result in any major impact in ADG, but consistently improved (linear, P ≤ 0.078) G:F and CE across experiments. The mechanism for this response is unclear but could be driven by intrinsic components of SBM or underestimating the energy value of SBM.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 458-459
Author(s):  
Keith M Buckhaus ◽  
Warren C Rusche ◽  
Zachary K Smith

Abstract Continental × British beef heifers were used in a randomized complete block design experiment to evaluate the effects of replacing dry-rolled corn with unprocessed rye on growth performance, efficiency of dietary net energy (NE) utilization, and carcass trait responses in finishing heifers. Heifers (n = 56; 433 ± 34.0 kg) were transported 241 km from a regional sale barn to the Ruminant Nutrition Center in Brookings, SD. Heifers were blocked by weight grouping and then allotted to pens (n = 7 heifers/pen and 4 pens/treatment). Treatments included a finishing diet that contained 60% grain (DM basis) as dry-rolled corn (DRC) or unprocessed rye grain (RYE). On d 14, heifers were consuming the final diet and were implanted with 200 mg of trenbolone acetate and 28 mg of estradiol benzoate (Synovex-Plus, Zoetis, Parsippany, NJ). RYE heifers had decreased (P ≤ 0.01) final body weight, average daily gain, and gain efficiency; but tended (P = 0.08) to have a greater dry matter intake compared to DRC. RYE had decreased (P ≤ 0.01) observed dietary NE and decreased (P ≤ 0.01) observed-to-expected dietary NE ratio for maintenance and gain compared to DRC. Dressing percentage, 12th rib fat thickness, ribeye area, and the distribution of USDA yield and quality grades were not altered (P ≥ 0.12) by diet. Hot carcass weight, yield grade, estimated empty body fat (EBF), and body weight at 28% EBF decreased (P ≤ 0.02) and retail yield increased (P= 0.01) in RYE compared to DRC. These data indicate that unprocessed rye is a palatable feed ingredient for inclusion in finishing diets for beef cattle and that rye inclusion only minimally influences carcass quality. The feeding value of unprocessed rye is considerably less (21.4%) than that of dry-rolled corn using current standards and approximately 91% of the NE value of processed rye.


2021 ◽  
Vol 100 (1) ◽  
Author(s):  
Olufemi Oluwaseun Babatunde ◽  
Olayiwola Adeola

Abstract Two experiments were carried out to determine a time-series effect of phytase on phosphorus (P) utilization in growing and finishing pigs using growth performance, apparent total tract digestibility (ATTD) of nutrients, P excretion, and plasma concentrations of minerals as the response criteria for evaluation. In both experiments, treatments were arranged as a 3 × 4 factorial in a randomized complete block design with 3 corn–soybean meal-based diets including a P-adequate positive control (PC), a low-P negative control (NC; no inorganic P), and NC supplemented with phytase at 1,000 FYT/kg (NC + 1,000); and 4 sampling time points at days 7, 14, 21, and 28 in experiment 1, and days 14, 26, 42, and 55 in experiment 2. In both trials, 96 growing pigs with average body weight (BW) of 19.8 ± 1.16 and 49.8 ± 3.21 kg, respectively, were allocated to the 3 diets with 8 replicates pens (4 barrows and 4 gilts) and 4 pigs per pen. In experiment 1, pigs fed the PC had higher (P < 0.01) BW, average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) when compared with pigs fed the NC. There was an interaction (P < 0.01) between time and diet on the BW and ADG of pigs while a linear and quadratic increase (P < 0.01) was observed with the ADFI and G:F, respectively, over time. Phytase supplementation improved (P < 0.01) all growth performance responses. Pigs fed the PC had greater (P < 0.01) ATTD of P and Ca than pigs fed the NC. There was no interaction effect on the ATTD of nutrients. Phytase addition improved the ATTD of P and Ca over pigs fed the NC. There was an interaction (P < 0.01) between diet and time on the total and water-soluble P (WSP) excreted. There was a quadratic decrease (P < 0.01) in plasma concentration of Ca in pigs over time. In experiment 2, there was a quadratic increase (P < 0.01) in BW, ADG, and G:F of pigs over time. Similarly, the inclusion of phytase improved (P < 0.05) all growth performance parameters except ADFI. A linear increase (P < 0.05) in the ATTD of DM, P, and Ca occurred over time. Phytase inclusion improved (P < 0.01) the ATTD of P and Ca. Plasma concentrations of P were improved by phytase addition. Phytase supplementation of the NC reduced WSP excretion by 45%, 32%, and 35% over the growing, finishing, and entire grow-finish period, respectively. In conclusion, phytase improves the utilization of P in growing and finishing pigs; however, the magnitude of effect on responses may vary over time.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 65-66
Author(s):  
Woong B Kwon ◽  
Kevin J Touchette ◽  
Aude Simongiovanni ◽  
Kostas Syriopoulos ◽  
Anna Wessels ◽  
...  

Abstract The hypothesis that excess dietary Leu affects growth performance and metabolism of branched-chain amino acids (BCAA) in growing pigs was tested. Forty barrows (30.0 ± 2.7 kg) were placed in metabolism crates and randomly allotted to 5 diets that contained 100, 150, 200, 250, or 300% of the requirement for standardized ileal digestible Leu. Initial and final body weight of pigs and daily feed provisions were recorded. Urine and fecal samples were collected for 5 d to measure N balance and biological value of diets. At the conclusion of the experiment, blood, brain, liver, and muscle samples were collected and average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were calculated. Orthogonal polynomial contrasts were used to determine linear and quadratic effects of increasing Leu in the diets. Results indicated that ADG, ADFI, and G:F decreased (linear, P < 0.05) as dietary Leu increased (Table 1). A trend (linear, P = 0.082) for decreased N retention and decreased (linear, P < 0.05) biological value of protein was also observed. Plasma urea N increased (linear, P < 0.05) and a quadratic reduction (P < 0.05) in plasma serotonin and a linear reduction (P < 0.05) in cerebral serotonin were observed with increasing dietary Leu. Concentrations of BCAA in liver increased (linear, P < 0.001), concentrations of BCAA in muscle decreased (linear, P < 0.05), concentration of α-keto-isovalerate was reduced (linear and quadratic, P < 0.001) in liver, muscle, and serum, and α-keto-β-methylvalerate was reduced (linear and quadratic, P < 0.001) in muscle and serum, whereas α-keto-isocaproate increased (linear, P < 0.05) in liver and muscle, and in serum (linear and quadratic, P < 0.001) with increasing dietary Leu. In conclusion, excess dietary Leu reduced growth performance and cerebral serotonin and tended to reduce protein synthesis.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Zachary K Smith ◽  
Kip Karges ◽  
Angel Aguilar

Abstract The objective of this experiment was to evaluate the influence of an active live yeast direct-fed microbial (DFM) product on receiving and backgrounding period growth performance and efficiency of dietary net energy (NE) utilization in low health risk beef steers. Maine-Anjou × Angus steers (n = 199; body weight [BW] = 252 ± 32.1 kg) were received from two sources at the Ruminant Nutrition Center in Brookings, SD, in November 2019 and used in a 77-d feedlot receiving and backgrounding experiment. Steers were provided access to long-stem hay and ad libitum water upon arrival. Steers were weighed, vaccinated for respiratory pathogens (source 2 only): infectious bovine rhinotracheitis, bovine viral diarrhea types 1 and 2, parainfluenza-3 virus, and bovine respiratory syncytial virus (Bovi-Shield Gold 5, Zoetis, Parsippany, NJ) vaccinated for clostridial species (Ultrabac 7/Somubac, Zoetis) and pour-on moxidectin (Cydectin, Bayer, Shawnee Mission, KS). Steers (n = 176 steers; initial unshrunk BW = 235 ± 27.6 kg) were allotted to pens (n = 20 pens; 10 pens per treatment; eight or nine steers per pen). Diets were based upon corn silage, dry-rolled corn, and dried distillers grains; dietary treatments were 1) no DFM (CON) and 2) DFM (Levucell SC, Advantage Titan, CNCM l-1077), fed at 10 g/steer/d providing 8 × 109 CFU of active live yeast to each steer daily (DFM). Initial BW was the average of day −1 and day 1 BW (n = 176 steers; initial BW = 253 ± 27.6 kg). On day 21, steers received a 200-mg progesterone and 20-mg estradiol benzoate implant. Data were analyzed from day 1 to 47 (receiving period), day 48 to 77, and from day 1 to 77 as a randomized complete block design; pen served as the experimental unit for all analyses. On day 47 of the experiment, DFM had greater BW (P = 0.01) by 0.9% and average daily gain (ADG; P = 0.01) by 4.2% and gain-to-feed ratio (G:F) tended (P = 0.13) to be 2.8% greater. Day 77 BW did not differ (P = 0.60), cumulative (days 1–77): ADG (P = 0.47), dry matter intake (P = 0.66), and G:F (P = 0.56) were similar. Yeast inclusion had no appreciable influence on performance-based dietary NE utilization or the ratio of observed/expected dietary NE (P ≥ 0.59). In low health risk steers, DFM improved performance during the feedlot receiving period. However, no improvements for DFM were detected for cumulative performance from day 1 to 77. The confirmation of yeast counts indicated the CFU to be above the expected level at the start of the trial but was found below expected level at the end of the trial. This may explain differences during the initial 47 d compared to cumulative growth performance results.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 88-89
Author(s):  
Henrique S Cemin ◽  
Mike D Tokach ◽  
Aaron M Gaines ◽  
Brent W Ratliff ◽  
Steve S Dritz ◽  
...  

Abstract Two experiments were conducted to determine the effects of soybean meal (SBM) level in diets with or without distillers dried grains with solubles (DDGS) on growth performance of late nursery pigs. A total of 1,064 and 1,011 pigs (PIC 280×1050; initially 10.5 ± 0.36 and 10.9 ± 0.22 kg) were used in Exp. 1 and 2, respectively, with 21 to 27 pigs per pen. Pens were assigned to treatments in a randomized complete block design with 7 replicates per treatment per experiment. Treatments 1 to 3 were diets with 23% DDGS and 21, 27, or 35% SBM. Treatments 4 and 5 were corn-SBM diets with 27 or 35% SBM. Diets were balanced to 1.30% standardized ileal digestible lysine and 2,606 kcal of net energy/kg. Data were analyzed with the GLIMMIX procedure of SAS with pen as the experimental unit and block as random effect. There was no evidence for treatment × experiment interactions, thus data from both trials were combined. Feeding diets with 23% DDGS decreased (P = 0.033) ADFI and improved (P = 0.033) G:F compared to corn-SBM diets, which may indicate underestimation of DDGS net energy. When analyzed as a factorial with or without DDGS, pigs fed diets with 35% SBM had a tendency (P = 0.052) for increased ADG and improved (P = 0.001) G:F compared with diets with pigs fed 27% SBM. As SBM increased from 21 to 35% in diets with DDGS, ADG (linear, P = 0.001) and G:F (quadratic, P = 0.007) improved. In summary, feeding diets with increasing SBM improved growth performance in late nursery pigs.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 78-79
Author(s):  
Maryane S Faria de Oliveira ◽  
John K Htoo ◽  
Caroline J González-Vega ◽  
John E Thomson ◽  
Hans H Stein

Abstract An experiment was conducted to test the hypothesis that Val from a Val-containing fermentation biomass product (Val-FB; 64.4% L-Val) has a bioavailability of 100% relative to L-Val (98% Val) when fed to weanling pigs. A Val-deficient basal diet containing 0.63% standardized ileal digestible (SID) Val was formulated. Six additional diets were prepared by supplementing the basal diet with 0.08, 0.16, or 0.24% L-Val or 0.12, 0.25, or 0.37% Val-FB to create experimental diets containing 0.71, 0.79, or 0.87% SID Val. A total of 224 weanling pigs (6.87 ± 0.64 kg) were allotted to a randomized complete block design with 7 diets and 8 replicate pens per diet. Diets were fed for 21 d and growth performance was measured on a pen basis. Orthogonal-polynomial contrasts were used to determine linear and quadratic effects of L-Val and Val-FB levels on performance and the effect of Val sources. A linear regression model based on performance was used to estimate the relative bioavailability (RBV) of Val in Val-FB relative to L-Val. The final body-weight (BW) and average-daily-gain (ADG) were greater (P < 0.01) for pigs fed diets supplemented with Val-FB than pigs fed diets supplemented with L-Val (Table 1). The average-daily-feed-intake (ADFI) decreased linearly (P < 0.01), whereas gain-to-feed ratio (G:F) increased (P < 0.01) by supplementing graded levels of both Val sources to the diets. The RBV of Val in Val-FB as determined by ADG, G:F, and final BW was 146, 135, and 143%, respectively, with 95% confidence intervals of 99 to 191%, 83 to 187%, and 70 to 217%, respectively. In conclusion, the linear regression estimated a RBV of at least 100% for Val-FB relative to L-Val, and pigs fed diets supplemented with Val-FB had greater ADG and final BW than pigs fed diets supplemented with the same amount of L-Val.


Sign in / Sign up

Export Citation Format

Share Document