scholarly journals 4-Hydroxyhalcone effects on cisplatin-induced genotoxicity model

2021 ◽  
Author(s):  
Aref Nazari ◽  
Mina Mirian ◽  
Mahmoud Aghaei ◽  
Mehdi Aliomrani

Abstract Background The genotoxicity of cisplatin (CP) as a platinum-based antineoplastic agent due to its oxidative stress induction was well known. In this research, we examined 4-hydroxychalcone (4-HCH) as a natural food that presents flavonoid effects on reactive oxygen species (ROS) production and CP-induced in vivo genotoxicity. Method and materials Cytotoxicity of CP and 4-HCH was measured on human embryonic kidney 293 cells with MTT assay. Then, intracellular ROS content at IC50 concentration of CP was measured with 2′,7′-dichlorofluorescein diacetate (DCFDA) dye. Finally, 4-HCH was administered intraperitoneally at 10 and 40 mg/kg/BW doses as a pre and post-treatment schedule in a mice model of CP genotoxicity (7 mg/kg). Acridine-orange-stained bone marrow cells were quantified for micronucleus presence examination. Results The calculated IC50 of CP and 4-HCH were reported around 19.4 and 133.6 μM, respectively, on HEK293 cells. Also, it was observed that 4-HCH at 0.2, 2 and 10 μM concentrations did not show obvious cytotoxicity. The fluorimetry confirmed that pre-treatment with 10 μM and co-treatment with 2 μM of 4-HCH could attenuate the CP-induced ROS production (P < 0.05 and P < 0.01, respectively). Also, the lowest micronucleated cells were seen in 10 mg/kg 4-HCH-treated group after CP exposure (39 ± 7.9, P < 0.0001). Discussion Our results demonstrated the antigenotoxic action of 4-HCH in CP-treated mice bone marrow cells for the first time in both concentrations of 10 and 40 mg/kg especially in the form of co-treatment. Further studies required clinical application of this compound in a combination of CP to attenuate the normal cells’ genotoxicity side effects.

Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


1984 ◽  
Vol 26 (2) ◽  
pp. 152-157
Author(s):  
S. M. Singh ◽  
D. L. Reimer

Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2′deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment – strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.Key words: sister chromatid exchange, BrdU, recombination, replication, X chromosome.


Blood ◽  
2013 ◽  
Vol 121 (12) ◽  
pp. e90-e97 ◽  
Author(s):  
Mark Wunderlich ◽  
Benjamin Mizukawa ◽  
Fu-Sheng Chou ◽  
Christina Sexton ◽  
Mahesh Shrestha ◽  
...  

Key Points A relevant xenograft chemotherapy model was developed by using standard AML induction therapy drugs and primary human AML patient samples. Human AML cells show significantly increased sensitivity to in vivo chemotherapy treatment compared with murine LSK and total bone marrow cells.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1633-1640
Author(s):  
LM Pelus ◽  
PS Gentile

Intravenous (IV) injection of 0.1 to 10 micrograms of authentic prostaglandin E2 (PGE2) in intact steady-state mice induces a population of bone marrow and spleen cells having the capacity to suppress CFU-GM proliferation when admixed with normal bone marrow cells. Equivalent suppression of CFU-GM committed to monocytic as well as granulocytic differentiation was observed using colony-stimulating factors (CSFs) differing in their lineage specificities and by direct morphological analysis of proliferating clones. Kinetic analysis indicates that suppressive bone marrow cells appear within 2 hours after PGE2 injection, are maximal at 6 hours, and are no longer observed by 24 hours postinjection. Positive and negative selection studies using monoclonal antibodies indicate that the PGE2-induced suppressor cells react positively with anti-GMA 1.2, MAC1, and F4/80 monoclonal antibodies, suggesting a myeloid/monocytic origin. As few as 1,000 positively selected bone marrow or spleen cells were able to inhibit maximally normal CFU-GM proliferation by 50,000 control bone marrow cells. Suppression of normal CFU-GM can be substituted for by 24- hour cell-free supernates from unseparated bone marrow cells or GMA 1.2 or F4/80 positively selected marrow or spleen cells from PGE2-treated but not control mice. These supernates also inhibited BFU-E proliferation. Injection of as few as 2 million bone marrow cells from PGE2-treated mice into steady-state mice or animals hematopoietically rebounding following a sublethal injection of cyclophosphamide significantly suppressed total CFU-GM proliferation in recipient mice within 6 hours. In summary, these studies describe the detection of a novel hematopoietic control network induced by PGE2 in intact mice.


Blood ◽  
1977 ◽  
Vol 50 (5) ◽  
pp. 857-866
Author(s):  
BJ Torok-Starb ◽  
NS Wolf ◽  
DR Boggs

Cellulose acetate membranes (CAM) placed in the peritoneal cavity of mice develop a macrophage layer capable of supporting in vivo hematopoietic colonies from intraperitoneally injected bone marrow cells. Modifications allowing for routine morphologic identification of colonies showed that both erythrocytic (E) and granulocytic (G) colonies occur with a consistent E:G ratio of 0.19 +/- 0.037. Stimulating recipients by bleeding or phenylhydrazine injection did not produce a significant change in the total number of colonies and a reduction in granulocytic colonies so that the E:G ratio significnatly increased. Hypertransfusion of donor animals had no effect on the number of erythroid colonies that grew on CAM of average recipients. The total colony-forming ability of bone marrow cells from genetically anemic W/WV mice was found not to differ from that of normal +/+ littermates; however, the E:G ratio of W/WV marrow in bled recipients was significantly lower (p less than 0.01) then that of +/+ marrow. These studies suggest that a CAM system supports an erythroid progenitor which is not affected by hypotransfusion of the donor animal, yet is dependent upon erythropoietin for colony formation, and that it is defective in the W/WV mouse.


2008 ◽  
Vol 51 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Miroslav Hodek ◽  
Jiřina Vávrová ◽  
Zuzana Šinkorová ◽  
Jaroslav Mokrý ◽  
Stanislav Filip

Experiments presented here were aimed at the description of hematopoiesis repair and in vivo homing of transplanted separated CD117+B220–bone marrow cells after whole-body lethal irradiation at LD 9Gy. ROSA 26 mice were used as donors of marrow cells for transplantation [B6;129S/Gt (ROSA)26Sor] and were tagged with lacZ gene, and F2 hybrid mice [B6129SF2/J] were used as recipients of bone marrow transplanted cells. Hematopoiesis repair was provided by transplantation, both suspension of whole bone marrow cells (5x106) and isolated CD117+B220–cells (5x104). Mice survived up to thirty days after irradiation. We demonstrated that transplantation of suspension of whole bone marrow cells led to faster recovery of CFU-GM (Granulocyte-macrophage colony forming units) in bone marrow and in the spleen too. It is not clear what the share of residential and transplanted cells is in the repair process. Our results demonstrate that sufficient hematopoietic repair occurs after transplantation of CD117+B220–(lacZ+) in lethally irradiated mice, and the difference in CFU-GM numbers in the bone marrow and spleen found on day 8 posttransplant has no influence on the survival of lethally irradiated mice (30 days follow-up).


Sign in / Sign up

Export Citation Format

Share Document