scholarly journals Mono-(2-ethylhexyl) Phthalate Rapidly Increases Celsr2 Protein Phosphorylation in HeLa Cells via Protein Kinase C and Casein Kinase 1

2006 ◽  
Vol 91 (1) ◽  
pp. 255-264 ◽  
Author(s):  
Stephanie A. Lahousse ◽  
Stephanie A. Beall ◽  
Kamin J. Johnson
FEBS Letters ◽  
1989 ◽  
Vol 255 (1) ◽  
pp. 205-208 ◽  
Author(s):  
Jordi Vila ◽  
Jefrrey M. Walker ◽  
Emilio Itarte ◽  
Michael J. Weber ◽  
Julianne J. Sando

1993 ◽  
Vol 268 (36) ◽  
pp. 27363-27370
Author(s):  
R S Eisenstein ◽  
P T Tuazon ◽  
K L Schalinske ◽  
S A Anderson ◽  
J A Traugh

1992 ◽  
Vol 285 (3) ◽  
pp. 973-978 ◽  
Author(s):  
P M Jones ◽  
S J Persaud ◽  
S L Howell

Increasing the cytosolic Ca2+ concentration of electrically permeabilized rat islets of Langerhans caused rapid increases in insulin secretion and in 32P incorporation into islet proteins. However, the secretory responsiveness of permeabilized islets was relatively transient, with insulin secretion approaching basal levels within 20-30 min despite the continued presence of stimulatory concentrations of Ca2+. The loss of Ca2(+)-induced insulin secretion was accompanied by a marked reduction in Ca2(+)-dependent protein phosphorylation, but not in cyclic AMP-dependent protein phosphorylation. Similarly, permeabilized islets which were no longer responsive to Ca2+ were able to mount appropriate secretory responses to cyclic AMP and to a protein kinase C-activating phorbol ester. These results suggest that prolonged exposure to elevated cytosolic Ca2+ concentrations results in a specific desensitization of the secretory mechanism to Ca2+, perhaps as a result of a decrease in Ca2(+)-dependent kinase activity. Furthermore, these studies suggest that secretory responses of B-cells to cyclic AMP and activators of protein kinase C are not dependent upon the responsiveness of the cells to changes in cytosolic Ca2+.


2000 ◽  
Vol 11 (7) ◽  
pp. 2497-2511 ◽  
Author(s):  
Jacomine Krijnse Locker ◽  
Annett Kuehn ◽  
Sibylle Schleich ◽  
Gaby Rutter ◽  
Heinrich Hohenberg ◽  
...  

The simpler of the two infectious forms of vaccinia virus, the intracellular mature virus (IMV) is known to infect cells less efficiently than the extracellular enveloped virus (EEV), which is surrounded by an additional, TGN-derived membrane. We show here that when the IMV binds HeLa cells, it activates a signaling cascade that is regulated by the GTPase rac1 and rhoA, ezrin, and both tyrosine and protein kinase C phosphorylation. These cascades are linked to the formation of actin and ezrin containing protrusions at the plasma membrane that seem to be essential for the entry of IMV cores. The identical cores of the EEV also appear to enter at the cell surface, but surprisingly, without the need for signaling and actin/membrane rearrangements. Thus, in addition to its known role in wrapping the IMV and the formation of intracellular actin comets, the membrane of the EEV seems to have evolved the capacity to enter cells silently, without a need for signaling.


1990 ◽  
Vol 58 (3) ◽  
pp. 761-765 ◽  
Author(s):  
T J Baldwin ◽  
S F Brooks ◽  
S Knutton ◽  
H A Manjarrez Hernandez ◽  
A Aitken ◽  
...  

1994 ◽  
Vol 25 (3-4) ◽  
pp. 297-304 ◽  
Author(s):  
Li-Hsien Lin ◽  
Linda J. Van Eldik ◽  
Neil Osheroff ◽  
Jeanette J. Norden

Sign in / Sign up

Export Citation Format

Share Document