scholarly journals In Utero Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin Induces Amphiregulin Gene Expression in the Developing Mouse Ureter

2006 ◽  
Vol 94 (1) ◽  
pp. 163-174 ◽  
Author(s):  
S. SH. Choi ◽  
M. A. Miller ◽  
P. A. Harper
2017 ◽  
Vol 18 (9) ◽  
pp. 1939 ◽  
Author(s):  
Daniela Parodi ◽  
Morgan Greenfield ◽  
Claire Evans ◽  
Anna Chichura ◽  
Alexandra Alpaugh ◽  
...  

2003 ◽  
Vol 74 (1) ◽  
pp. 114-128 ◽  
Author(s):  
Katie J. Turner ◽  
Barry S. McIntyre ◽  
Suzanne L. Phillips ◽  
Norman J. Barlow ◽  
Christopher J. Bowman ◽  
...  

2011 ◽  
Vol 113 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Malgorzata Durlej ◽  
Ilona Kopera ◽  
Katarzyna Knapczyk-Stwora ◽  
Anna Hejmej ◽  
Malgorzata Duda ◽  
...  

2007 ◽  
Vol 98 (1) ◽  
pp. 87-98 ◽  
Author(s):  
S. B. Metzdorff ◽  
M. Dalgaard ◽  
S. Christiansen ◽  
M. Axelstad ◽  
U. Hass ◽  
...  

Endocrinology ◽  
2020 ◽  
Vol 161 (12) ◽  
Author(s):  
Zhihao Wang ◽  
Myles H Alderman ◽  
Cyrus Asgari ◽  
Hugh S Taylor

Abstract In utero Bisphenol A (BPA) exposure has been linked to many deficits during brain development, including sexual differentiation, behavior, and motor coordination. Yet, how BPA induces these disorders and whether its effects are long lasting are largely unknown. In this study, using a mouse model, we demonstrated that in utero exposure to an environmentally relevant dose of BPA induced locomotor deficits, anxiety-like behavior, and declarative memory impairments that persisted into old age (18 months). Compared to the control animals, the BPA-exposed mice had a significant decrease in locomotor activity, exploratory tendencies, and long-term memory, and an increase in anxiety. The global brain gene expression profile was altered permanently by BPA treatment and showed regional and sexual differences. The BPA-treated male mice had more changes in the hippocampus, while female mice experienced more changes in the cortex. Overall, we demonstrate that in utero exposure to BPA induces permanent changes in brain gene expression in a region-specific and sex-specific manner, including a significant decrease in locomotor activity, learning ability, long-term memory, and an increase in anxiety. Fetal/early life exposures permanently affect neurobehavioral functions that deteriorate with age; BPA exposure may compound the effects of aging.


Sign in / Sign up

Export Citation Format

Share Document