scholarly journals Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring

Endocrinology ◽  
2020 ◽  
Vol 161 (12) ◽  
Author(s):  
Zhihao Wang ◽  
Myles H Alderman ◽  
Cyrus Asgari ◽  
Hugh S Taylor

Abstract In utero Bisphenol A (BPA) exposure has been linked to many deficits during brain development, including sexual differentiation, behavior, and motor coordination. Yet, how BPA induces these disorders and whether its effects are long lasting are largely unknown. In this study, using a mouse model, we demonstrated that in utero exposure to an environmentally relevant dose of BPA induced locomotor deficits, anxiety-like behavior, and declarative memory impairments that persisted into old age (18 months). Compared to the control animals, the BPA-exposed mice had a significant decrease in locomotor activity, exploratory tendencies, and long-term memory, and an increase in anxiety. The global brain gene expression profile was altered permanently by BPA treatment and showed regional and sexual differences. The BPA-treated male mice had more changes in the hippocampus, while female mice experienced more changes in the cortex. Overall, we demonstrate that in utero exposure to BPA induces permanent changes in brain gene expression in a region-specific and sex-specific manner, including a significant decrease in locomotor activity, learning ability, long-term memory, and an increase in anxiety. Fetal/early life exposures permanently affect neurobehavioral functions that deteriorate with age; BPA exposure may compound the effects of aging.

2012 ◽  
Vol 2 (11) ◽  
pp. 1437-1445 ◽  
Author(s):  
Ari Winbush ◽  
Danielle Reed ◽  
Peter L. Chang ◽  
Sergey V. Nuzhdin ◽  
Lisa C. Lyons ◽  
...  

BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Snehajyoti Chatterjee ◽  
Christopher C. Angelakos ◽  
Ethan Bahl ◽  
Joshua D. Hawk ◽  
Marie E. Gaine ◽  
...  

Abstract Background CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. Results We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. Conclusions These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms. Graphical abstract


Cell ◽  
2002 ◽  
Vol 111 (4) ◽  
pp. 483-493 ◽  
Author(s):  
Zhonghui Guan ◽  
Maurizio Giustetto ◽  
Stavros Lomvardas ◽  
Joung-Hun Kim ◽  
Maria Concetta Miniaci ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Vivek Sagar ◽  
Thorsten Kahnt

Memorable positive and negative experiences produce different profiles of gene expression in brain areas associated with long-term memory.


2020 ◽  
Author(s):  
Snehajyoti Chatterjee ◽  
Christopher C. Angelakos ◽  
Ethan Bahl ◽  
Joshua D. Hawk ◽  
Marie E. Gaine ◽  
...  

AbstractCREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors. Identifying specific domain functions for multi-action proteins is essential to understand processes necessary for healthy living including cognitive function and a robust circadian clock. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. We found that CBPKIX/KIX mice were impaired in long-term, but not short-term spatial memory in the Morris water maze. Using an unbiased analysis of gene expression after training for hippocampus-dependent memory, we discovered dysregulation of CREB and CLOCK target genes and downregulation of circadian genes in CBPKIX/KIX mice. With our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark, although phase resetting to light was comparable to wildtype. These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms.


2020 ◽  
Vol 24 (8) ◽  
pp. 885-896
Author(s):  
L. N. Grinkevich

The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation. Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile dementia, which are often accompanied by deterioration in the learning ability and by memory impairment. Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory formation, depending on the activation or inhibition of their expression. The review presents summarized data on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active mental and physical exercises.


Sign in / Sign up

Export Citation Format

Share Document