scholarly journals Developmental Toxicity of Perfluorooctanoic Acid in the CD-1 Mouse after Cross-Foster and Restricted Gestational Exposures

2006 ◽  
Vol 95 (2) ◽  
pp. 462-473 ◽  
Author(s):  
C. J. Wolf ◽  
S. E. Fenton ◽  
J. E. Schmid ◽  
A. M. Calafat ◽  
Z. Kuklenyik ◽  
...  
2015 ◽  
Vol 34 (10) ◽  
pp. 985-996 ◽  
Author(s):  
V Mashayekhi ◽  
K Haj Mohammad Ebrahim Tehrani ◽  
M Hashemzaei ◽  
K Tabrizian ◽  
J Shahraki ◽  
...  

Background: Perfluorooctanoic acid (PFOA) is one of the most widely used perfluoroalkanes as surfactants, lubricants and processing aids in the production of polymers, which has also been detected in the environment, wildlife and human body. Animal studies indicated that PFOA caused a wide array of toxic effects including liver and brain dysfunction, carcinogenicity and reproductive and developmental toxicity. Based on the established role of mitochondria-mediated pathways in the observed toxic effects of many drugs and chemicals, in this study, the potential toxic effects of PFOA on mitochondria isolated from rat liver and brain have been investigated. Method: Mitochondria were isolated by differential centrifugation method and incubated with different concentrations of PFOA (0.5–1.5 mM). The effects of PFOA were assessed on a series of mitochondrial parameters including reactive oxygen species (ROS) formation, activities of mitochondrial complexes I/II/III, reduced glutathione (GSH) content, adenosine triphosphate (ATP) level, membrane potential, lipid peroxidation (LPO), mitochondrial swelling and cytochrome c release. Results: The data on liver mitochondria indicated that PFOA-induced ROS elevation in both mitochondrial complexes I and III, mitochondrial membrane potential collapse, swelling, cytochrome c release and decreased ATP level which induces apoptosis or necrosis. On brain mitochondria, PFOA showed fairly similar effects on the above-mentioned parameters. However, different results were obtained when the effect of PFOA was assessed on LPO and complex II activity. Conclusions: Due to the fact that PFOA had toxic effects on the mitochondria isolated, it could be suggested that mitochondrial toxicity could be a plausible mechanism for the toxic effects of this fluorochemical on liver and brain function.


2019 ◽  
Author(s):  
Jae-Hwan Lee ◽  
Seon Mi Park ◽  
Eui-Man Jung ◽  
Eui-Bae Jeung

Author(s):  
Kh. Kh. Khamidulina ◽  
E. V. Tarasova ◽  
A. S. Proskurina ◽  
A. R. Egiazaryan ◽  
I. V. Zamkova ◽  
...  

Currently, perfluorooctanoic acid (PFOA) has no hygienic standards in the air of the working area and objects of the human environment in the Russian Federation. By the decision of the Stockholm Convention SC-9/12, PFOA, its salts and derivatives are included in Part I of Annex A of the Stockholm Convention on Persistent Organic Pollutants in 2019 (with exceptions for possible use). The Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade included PFOA, its salts and derivatives in the list of potential candidates for inclusion in Annex III of the Rotterdam Convention at the next meeting COP10 in 2021. The use of this chemical on the territory of the Russian Federation entails water and air pollution. Industrial emissions and waste water from fluoropolymer production, thermal use of materials and products containing polytetrafluoroethylene, biological and atmospheric degradation of fluorotelomer alcohols, waste water from treatment facilities are the sources of the release of PFOA into the environment. Analysis of international databases has showed that PFOA is standardized in the air of the working area in Germany, Japan, and Switzerland. In the countries of the European Union, as well as the USA and Canada, the issue of PFOA standardizing in drinking water is being now actively under discuss. Taking into account the high toxicity and hazard of the substance and the serious concern of the civil society of the Russian Federation, the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing requested the Russian Register of Potentially Hazardous Chemical and Biological Substances to develop MACs for perfluorooctanoic acid in the air of the working area and water as soon as possible. The MACs for PFOA have been proposed using risk analysis: 0,005 mg/m3, aerosol, hazard class 1 – in the air of the working area and 0,0002 mg/L, the limiting hazard indicator – sanitary-toxicological, hazard class 1 – in the water.


1988 ◽  
Author(s):  
Valerie G. Coppes ◽  
Charlotte L. Speckman ◽  
Jr Korte ◽  
Don W.

Sign in / Sign up

Export Citation Format

Share Document