Reduction in turgid water volume in jack pine, white spruce and black spruce in response to drought and paclobutrazol

2000 ◽  
Vol 20 (10) ◽  
pp. 701-707 ◽  
Author(s):  
J. G. Marshall ◽  
R. G. Rutledge ◽  
E. Blumwald ◽  
E. B. Dumbroff
2017 ◽  
Vol 47 (8) ◽  
pp. 1116-1122 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Conifer winter damage results primarily from loss of cold hardiness during unseasonably warm days in late winter and early spring, and such damage may increase in frequency and severity under a warming climate. In this study, the dehardening dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) B.S.P.) were examined in relation to thermal accumulation during artificial dehardening in winter (December) and spring (March) using relative electrolyte leakage and visual assessment of pine needles and spruce shoots. Results indicated that all four species dehardened at a similar rate and to a similar extent, despite considerably different thermal accumulation requirements. Spring dehardening was comparatively faster, with black spruce slightly hardier than the other conifers at the late stage of spring dehardening. The difference, however, was relatively small and did not afford black spruce significant protection during seedling freezing tests prior to budbreak in late March and early May. The dehardening curves and models developed in this study may serve as a tool to predict cold hardiness by temperature and to understand the potential risks of conifer cold injury during warming–freezing events prior to budbreak.


2011 ◽  
Vol 28 (3) ◽  
pp. 146-151 ◽  
Author(s):  
Alain Paquette ◽  
Jean-Pierre Girard ◽  
Denis Walsh

Abstract Although studies in the past have reported that the deeper planting of conifers has no effect on seedling performance, most planting guidelines in use today still recommend that seedlings be planted to the rootcollar. Past studies were mostly observational, used bareroot seedlings, and often reported early results from just one or two depths of planting treatments. Most of the results available regarding planting depth for boreal species are anecdotal, although they are planted by the hundreds of millions every year. The present study reports no short-term (1 year) or long-term (15 to 19 years) negative effect of planting depth on the survival and height and diameter growth of black spruce, white spruce, and jack pine seedlings over three large, replicated experiments in the boreal forest of eastern and northern Quebec (eastern Canada). Four different depth treatments were compared, from manual planting at the rootcollar to the deepest mechanical planting treatment at 10 cm or more, making this the largest, longest-lasting study of its kind. Although, as expected, important differences in growth were present between species, all three commonly planted conifers reacted similarly to the planting depth treatments (no effect). This result can in part be attributed to an almost perfect control of frost heaving in the deepest two treatments. Planting depth effects were assessed using analysis of variance, multiple Tukey honestly significant difference, and uncorrected pairwise one-tailed t-tests to increase the probability of detecting a negative effect. Absolute differences and effect sizes (generally small and often positive with greater depths) were also analyzed.


1988 ◽  
Vol 5 (3) ◽  
pp. 185-189 ◽  
Author(s):  
D. Craig Sutherland ◽  
Robert J. Day

Abstract This paper is the first general review of the affects of container volume on the survival and growth of containerized white spruce, black spruce, and jack pine seedlings. The review shows that the literature on this topic is fragmentary and inconsistent. Seedling growth in the greenhouse production phase has been more completely quantified than subsequent establishment and growth after out-planting in the field. In the greenhouse production phase, seedling growth increased from 72 to 360% when the container volume was tripled in size. After outplanting in the field, seedling growth trends were more variable. Seedling height growth increased from 34 to 84% when container volume was tripled in size. Seedling survival was more difficult to assess because of limited data. Only white spruce showed a 10% increase in survival with an increase in container volume. The indications from this literature review suggest that nursery managers and practicing foresters should become more aware of the limitations imposed on seedling survival and growth due to container volume. To maintain optional survival and growth for white spruce, black spruce and jack pine, the container volume should range from 90 to 120 cm3. North. J. Appl. For. 5:185-189, Sept. 1988.


1981 ◽  
Vol 16 (3) ◽  
pp. 322-355 ◽  
Author(s):  
H. J. B. Birks

AbstractKylen Lake, located within the Toimi drumlin field, is critically positioned in relation to Late Wisconsin glacial advances, for it lies between the areas covered by the Superior and St. Louis glacial lobes between 12,000 and 16,000 yr B.P. The pollen and plant-macrofossil record suggests the presence of open species-rich “tundra barrens” from 13,600 to 15,850 yr B.P. Small changes in percentages of Artemisia pollen between 14,300 and 13,600 yr B.P. appear to be artifacts of pollen-percentage data. Shrub-tundra with dwarf birch, willow, and Rhododendron lapponicum developed between 13,600 and 12,000 yr B.P. Black and white spruce and tamarack then expanded to form a vegetation not dissimilar to that of the modern forest-tundra ecotone of northern Canada. At 10,700 B.P. spruce and jack pine increased to form a mosaic dominated by jack pine and white spruce on dry sites and black spruce, tamarack, and deciduous trees such as elm and ash on moist fertile sites. At 9250 yr B.P. red pine and paper birch became dominant to form a vegetation that may have resembled the dry northern forests of Wisconsin today. The diagram terminates at 8410 ± 85 yr B.P. Climatic interpretation of this vegetational succession suggests a progressive increase in temperature since 14,300 yr B.P. This unidirectional trend in climate contrasts with the glacial history of the area. Hypotheses are presented to explain this lack of correspondence between pollen stratigraphy and glacial history. The preferred hypothesis is that the ice-margin fluctuations were controlled primarily by changes in winter snow accumulation in the source area of the glacier, whereas the vegetation and hence the pollen stratigraphy were controlled by climatic changes in front of the ice margin.


1994 ◽  
Vol 24 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Roberta Yakimchuk ◽  
John Hoddinott

Anthropogenic production of CO2 and stratospheric ozone depleting chemicals is altering the plant growth environment. Numerous studies have examined the influence of increasing CO2 and UV-B levels on plant growth and physiology, but few studies examine their interaction. Jack pine (Pinusbanksiana Lamb.), black spruce (Piceamariana (Mill.) B.S.R), and white spruce (Piceaglauca (Moench) Voss) were raised in growth rooms from seed for 16 weeks in air with either 350 or 700 μmol•mol−1 of CO2 in the presence or absence of supplemental UV-B irradiation. Classical and functional growth analyses were performed to identify treatment effects. Biomass production in all three species was increased by high CO2 levels while UV-B light reduced it. Shade-intolerant jack pine showed a greater production of UV-B absorbing pigments in UV-B light than did shade-tolerant spruce species. Overall, white spruce was the most sensitive species to both treatment factors. The relative magnitude of the effects in the three species caused by enhanced CO2 and UV-B levels indicate that future conifer seedling growth and competitive ability will be altered by the changing environment.


1995 ◽  
Vol 12 (2) ◽  
pp. 69-74
Author(s):  
Anneli Jalkanen

Abstract The development of morphological attributes of containerized seedlings during the growing season was studied in eight crops from three nurseries in Northern Ontario, including four black spruce crops, three jack pine crops, and one white spruce crop. The variability was proportionally largest in root and shoot dry mass, followed by height and diameter. During seedling growth, proportionally the variability of size did not seem to increase. In absolute scale, however, differences between individual seedlings increased more than differences between seedling trays, possibly due to competition between individuals. Height and shoot growth were greater in the beginning of the growing season, and diameter and root growth were greater toward the end. In comparison to standards, the balance between morphological attributes (height/diameter, shoot/root) was usually acceptable, and usually independent of seedling size. The easiest way of monitoring crop development is to take seedling samples at regular intervals and to construct a growth progression curve for seedling height, if diameter growth reaches acceptable level. Care should be taken that the height of seedlings does not increase too much at the expense of diameter and root development in the larger crops. To monitor this, height-diameter ratios and shoot-root ratios might be measured a couple of times during the growing season to take corrective action if necessary. North. J. Appl. For. 12(2):69-74.


1989 ◽  
Vol 6 (4) ◽  
pp. 183-185
Author(s):  
David I. Maass ◽  
Andrea N. Colgan ◽  
N. Lynn Cochran ◽  
Carl L. Haag ◽  
James A. Hatch

Abstract Long-term performance of container-grown seedlings in Maine was unknown in the late 1970s. A study was established to test the performance of five conifer species: Norway, white and black spruce, and red and jack pine, grown in four containers of similar volume: Can-Am Multipot #1, Multipot #2, Japanese Paperpot FH408, and Styroblock 4. Seven years after outplanting, stem heights of jack pine and red pine were significantly greater for trees started in Multipot #2 containers. Three spruce species with the greatest growth were started in Multipot #1 containers. Paperpot seedlings ranked second in height for pines, Norway spruce, and white spruce; Styroblock 4's ranked last for all species. North. J. Appl. For. 6:183-185, December 1989.


1986 ◽  
Vol 62 (5) ◽  
pp. 446-450 ◽  
Author(s):  
S. W. J. Dominy ◽  
J. E. Wood

Seeding trials were established on four different sites in northern Ontario (46°41′N to 49°19′N) in 1979 and 1980. Jack pine (Pinus banksiana Lamb.) was seeded on two medium sand sites, black spruce (Picea mariana [Mill.] B.S.P.) on a sandy clay site, and white spruce (P. glauca [Moench] Voss) on a clay site. Conventional bare spot seeding was compared with spot seeding under Finnish-designed plastic shelters. At least two seeding dates were compared in each trial. Third- and fifth-year stocking and fifth-year height data are presented.Stocking of all three species was increased, regardless of sowing date, when shelters were used. With the exception of June-sown black spruce and one June sowing of jack pine, height growth was not significantly improved through the use of seed shelters. Shelters may prove to be a viable regeneration option only on cooler, exposed sites with little vegetative competition. Key words: Shelter spot seeding, bare spot seeding, Pinus banksiana Lamb., Picea mariana [Mill.] B.S.P., P. glauca [Moench] Voss.


Botany ◽  
2016 ◽  
Vol 94 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Rongzhou Man ◽  
Steve Colombo ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Compared with the effects of spring frosts on opening buds or newly flushed tissues, winter freezing damage to conifers, owing to temperature fluctuations prior to budbreak, is rare and less known. In this study, changes in cold hardiness (measured based on electrolyte leakage and needle damage) and spring budbreak were assessed to examine the responses of four boreal conifer species — black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca) (Moench) Voss), jack pine (Pinus banksiana Lamb.), and lodgepole pine (Pinus contorta Dougl. ex. Loud.) — to different durations of experimental warming (16 °C day to –2 °C night with a 10 h photoperiod, except for night temperatures during November warming (+2 °C)). Seedlings showed increased responses to warming from November to March, while the capacity to regain the cold hardiness lost to warming decreased during the same period. This suggests an increasing vulnerability of conifers to temperature fluctuations and freezing damage with the progress of chilling and dormancy release from fall to spring. Both lodgepole pine and jack pine initiated spring growth earlier and had greater responses to experimental warming in bud phenology than black spruce and white spruce, suggesting a greater potential risk of frost/freezing damage to pine trees in the spring.


1993 ◽  
Vol 3 (4) ◽  
pp. 259-270 ◽  
Author(s):  
Bruce Downie ◽  
Urban Bergsten ◽  
Ben S. P. Wang ◽  
J. Derek Bewley

AbstractTwo different pre-emergence treatments preventing radicle protrusion by limiting the extent of imbibition were tested on conifer seeds. Osmotic priming in solutions of polyethylene glycol (PEG) which prevented radicle protrusion during prolonged (3 weeks) treatment resulted in variable percentage germination, mean germination time, and coefficient of uniformity of germination among different seedlots when placed on water. All three germination parameters were either unchanged or inferior in seeds subjected to the various PEG concentrations, treatment temperatures and treatment durations when compared with prechilled controls. In contrast, white spruce and jack pine seeds invigorated at 30% moisture content and 15°C in Gore-Tex membrane tubes consistently germinated faster than prechilled control seeds when subsequently placed on water. Tube invigoration affected neither the ability of seeds to complete germination nor the uniformity of germination. The decrease in mean germination time as treatment duration progressed was always linear and plateaued at approximately 4 days after the tube-invigorated seeds were placed on water regardless of species or seedlot. On average, tube invigoration decreased white spruce mean germination time by 0.13±0.02, and black spruce by 0.23±0.03 day per day of invigoration for up to 20 days of treatment. Jack pine mean germination time decreased 0.2±0.04 day per day of invigoration for up to 14 days of treatment.


Sign in / Sign up

Export Citation Format

Share Document