scholarly journals Soil respiration in a mixed temperate forest and its contribution to total ecosystem respiration

2005 ◽  
Vol 25 (5) ◽  
pp. 609-619 ◽  
Author(s):  
J. C. Yuste ◽  
M. Nagy ◽  
I. A. Janssens ◽  
A. Carrara ◽  
R. Ceulemans
2011 ◽  
Vol 8 (1) ◽  
pp. 147-164 ◽  
Author(s):  
L. Merbold ◽  
W. Ziegler ◽  
M. M. Mukelabai ◽  
W. L. Kutsch

Abstract. Carbon dioxide efflux from the soil surface was measured over a period of several weeks within a heterogeneous Brachystegia spp. dominated miombo woodland in Western Zambia. The objectives were to examine spatial and temporal variation of soil respiration along a disturbance gradient from a protected forest reserve to a cut, burned, and grazed area outside, and to relate the flux to various abiotic and biotic drivers. The highest daily mean fluxes (around 12 μmol CO2 m−2 s−1) were measured in the protected forest in the wet season and lowest daily mean fluxes (around 1 μmol CO2 m−2 s−1) in the most disturbed area during the dry season. Diurnal variation of soil respiration was closely correlated with soil temperature. The combination of soil water content and soil temperature was found to be the main driving factor at seasonal time scale. There was a 75% decrease in soil CO2 efflux during the dry season and a 20% difference in peak soil respiratory flux measured in 2008 and 2009. Spatial variation of CO2 efflux was positively related to total soil carbon content in the undisturbed area but not at the disturbed site. Coefficients of variation of efflux rates between plots decreased towards the core zone of the protected forest reserve. Normalized soil respiration values did not vary significantly along the disturbance gradient. Spatial variation of respiration did not show a clear distinction between the disturbed and undisturbed sites and could not be explained by variables such as leaf area index. In contrast, within plot variability of soil respiration was explained by soil organic carbon content. Three different approaches to calculate total ecosystem respiration (Reco) from eddy covariance measurements were compared to two bottom-up estimates of Reco obtained from chambers measurements of soil- and leaf respiration which differed in the consideration of spatial heterogeneity. The consideration of spatial variability resulted only in small changes of Reco when compared to simple averaging. Total ecosystem respiration at the plot scale, obtained by eddy covariance differed by up to 25% in relation to values calculated from the soil- and leaf chamber efflux measurements but without showing a clear trend.


2006 ◽  
Vol 20 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Russell K. Monson ◽  
Sean P. Burns ◽  
Mark W. Williams ◽  
Anthony C. Delany ◽  
Michael Weintraub ◽  
...  

2005 ◽  
Vol 12 (2) ◽  
pp. 230-239 ◽  
Author(s):  
E. A. Davidson ◽  
A. D. Richardson ◽  
K. E. Savage ◽  
D. Y. Hollinger

2010 ◽  
Vol 7 (4) ◽  
pp. 5757-5800 ◽  
Author(s):  
L. Merbold ◽  
W. Ziegler ◽  
M. M. Mukelabai ◽  
W. L. Kutsch

Abstract. Carbon dioxide efflux from the soil surface was measured over a period of several weeks within a heterogeneous Brachystegia spp. dominated miombo woodland in Western Zambia. The objectives were to examine spatial and temporal variation of soil respiration along a disturbance gradient from a protected forest reserve to a cut, burned, and grazed area outside, and to relate the flux to various abiotic and biotic drivers. The highest daily mean fluxes (around 12 μmol m−2 s−1) were measured in the protected forest in the wet season and lowest daily mean fluxes (around 1 μmol m−2 s−1) in the most disturbed area during the dry season. Diurnal variation of soil respiration was closely correlated with soil temperature. The combination of soil water content and soil temperature was found to be the main driving factor at seasonal time scale. There was a 75% decrease in soil CO2 efflux during the dry season and a 20% difference in peak soil respiratory flux measured in 2008 and 2009. Spatial variation of CO2 efflux was positively related to total soil carbon content in the undisturbed area but not at the disturbed site. Coefficients of variation of efflux rates between plots decreased towards the core zone of the protected forest reserve. Normalized soil respiration values did not vary significantly along the disturbance gradient. Spatial variation of respiration did not show a clear distinction between the disturbed and undisturbed sites and was neither explained by soil carbon nor leaf area index. In contrast, within plot variability of soil respiration was explained by soil organic carbon content. Three different approaches to calculate total ecosystem respiration (Reco) from eddy covariance measurements were compared to two bottom-up estimates of Reco obtained from chambers measurements of soil- and leaf respiration which differed in the consideration of spatial heterogeneity. The consideration of spatial variability resulted only in small changes of Reco when compared to simple averaging. Total ecosystem respiration at the plot scale, obtained by eddy covariance differed by up to 25% in relation to values calculated from the soil- and leaf chamber efflux measurements but without showing a clear trend.


2011 ◽  
Vol 8 (10) ◽  
pp. 3077-3092 ◽  
Author(s):  
L. Taneva ◽  
M. A. Gonzalez-Meler

Abstract. Soil respiration (RS) is a major flux in the global carbon (C) cycle. Responses of RS to changing environmental conditions may exert a strong control on the residence time of C in terrestrial ecosystems and in turn influence the atmospheric concentration of greenhouse gases. Soil respiration consists of several components oxidizing soil C from different pools, age and chemistry. The mechanisms underlying the temporal variability of RS components are poorly understood. In this study, we used the long-term whole-ecosystem 13C tracer at the Duke Forest Free Air CO2 Enrichment site to separate forest RS into its autotrophic (RR) and heterotrophic components (RH). The contribution of RH to RS was further partitioned into litter decomposition (RL), and decomposition of soil organic matter (RSOM) of two age classes – up to 8 yr old and SOM older than 8 yr. Soil respiration was generally dominated by RSOM during the growing season (44% of daytime RS), especially at night. The contribution of heterotrophic respiration (RSOM and RL) to RS was not constant, indicating that the seasonal variability in RR alone cannot explain seasonal variation in RS. Although there was no diurnal variability in RS, there were significant compensatory differences in the contribution of individual RS components to daytime and nighttime rates. The average contribution of RSOM to RS was greater at night (54%) than during the day (44%). The average contribution of RR to total RS was ~30% during the day and ~34% during the night. In contrast, RL constituted 26% of RS during the day and only 12% at night. About 95% of the decomposition of soil C older than 8 yr (Rpre-tr) originated from RSOM and showed more pronounced and consistent diurnal variability than any other RS component; nighttime rates were on average 29% higher than daytime rates. In contrast, the decomposition of more recent, post-treatment C (Rpre-tr) did not vary diurnally. None of the diurnal variations in components of RH could be explained by only temperature and moisture variations. Our results indicate that the variation observed in the components of RS is the result of complex interaction between dominant biotic controls (e.g. plant activity, mineralization kinetics, competition for substrates) over abiotic controls (temperature, moisture). The interactions and controls among roots and other soil organisms that utilize C of different chemistry, accessibility and ages, results in the overall soil CO2 efflux. Therefore understanding the controls on the components of RS is necessary to elucidate the influence of ecosystem respiration on atmospheric C-pools at different time scales.


2021 ◽  
Author(s):  
Olga Gavrichkova ◽  
Dario Liberati ◽  
Viktoriya Varyushkina ◽  
Kristina Ivashchenko ◽  
Paolo De Angelis ◽  
...  

<p>Release of heavy metals, salts and other toxic agents in the environment is of increasing concern in urban areas. Contaminants not solely decline the quality of the local environment and affect the health of human population and urban ecosystems but are also spread through runoff and leaching into non-contaminated areas. Urban lawns are the most distributed green infrastructure in the cities. Management of lawn system may either exacerbate the negative effects of contaminants on lawn functioning either help to withstand the toxic effects and maintain the lawn ecosystem health and the efficient release of ecosystem services.  </p><p>The aim of this study was to evaluate the interactions between the lawn management, the lawn functioning, and the release into the soil of typical urban contaminants. For this purpose, <em>Festuca arundinacea</em> grass was planted in a turf-sand mixture with and without amendment addition (zeolite + vermicompost). To reproduce the impact of traffic-related contaminants in proximity of the road, pots were treated with a solution containing de-icing salt (NaCl) and 6 heavy metals (Zn, Cd, Pb, Cr, Cu, Ni), imitating road runoff solution. After contamination, half of pots was maintained at optimum soil water content (Smart irrigation), another half was left to periodical drying in order to simulate conditions with discontinuous watering (Periodical irrigation). The same experimental scheme was reproduced for unplanted soil. CO<sub>2</sub> net ecosystem exchange (NEE), soil and ecosystem respiration as well as flux from unplanted soil (heterotrophic respiration) were measured shortly after the treatment (short-term) and up 3 months since the treatment start (long-term).</p><p>Soil amendment stimulated plant productivity and increased the efficiency of the system in C uptake (+56% NEE). A relevant reduction of NEE was observed from 14 to 40 days after the application of traffic-related contaminants in both amended and non amended pots. During this period the contaminants had the greatest impact on lawn NEE subjected to Periodic irrigation (-49% and -66% in amended and non amended pots, respectively), while lawn under Smart irrigation was less affected (-35% and -26% in amended and non amended pots, respectively). Different respiration sources (ecosystem respiration, soil respiration, heterotrophic respiration) were characterized by different sensitivity to management and contamination. Heterotrophic flux was not sensitive to soil amending but declined with contamination with enhanced negative effect under Smart irrigation. Response of ecosystem respiration to contamination was less pronounced in confront to soil respiration suggesting leaf-level buffering.    </p><p>Three months later,  the effect of contaminants on lawn gas exchange ceased for all treated pots. Instead, the irrigation effect persisted depending on whether pots were amended or not. In non amended pots NEE was reduced by 18% under Periodic irrigation, while this effect was not present in amended pots. We conclude, that performance of such green infrastructure as lawns in terms of C sequestration under multiple anthropogenic stressors could be efficiently improved through soil amending and irrigation control.</p><p>Current research was financially supported by RFBR No. 19-29-05187 and RSF No. 19-77-30012.</p>


2020 ◽  
Vol 17 (3) ◽  
pp. 699-714
Author(s):  
Rafat Qubaja ◽  
Fyodor Tatarinov ◽  
Eyal Rotenberg ◽  
Dan Yakir

Abstract. Partitioning carbon fluxes is key to understanding the process underlying ecosystem response to change. This study used soil and canopy fluxes with stable isotopes (13C) and radiocarbon (14C) measurements in an 18 km2, 50-year-old, dry (287 mm mean annual precipitation; nonirrigated) Pinus halepensis forest plantation in Israel to partition the net ecosystem's CO2 flux into gross primary productivity (GPP) and ecosystem respiration (Re) and (with the aid of isotopic measurements) soil respiration flux (Rs) into autotrophic (Rsa), heterotrophic (Rh), and inorganic (Ri) components. On an annual scale, GPP and Re were 655 and 488 g C m−2, respectively, with a net primary productivity (NPP) of 282 g C m−2 and carbon-use efficiency (CUE = NPP ∕ GPP) of 0.43. Rs made up 60 % of the Re and comprised 24±4 %Rsa, 23±4 %Rh, and 13±1 %Ri. The contribution of root and microbial respiration to Re increased during high productivity periods, and inorganic sources were more significant components when the soil water content was low. Comparing the ratio of the respiration components to Re of our mean 2016 values to those of 2003 (mean for 2001–2006) at the same site indicated a decrease in the autotrophic components (roots, foliage, and wood) by about −13 % and an increase in the heterotrophic component (Rh∕Re) by about +18 %, with similar trends for soil respiration (Rsa∕Rs decreasing by −19 % and Rh∕Rs increasing by +8 %, respectively). The soil respiration sensitivity to temperature (Q10) decreased across the same observation period by 36 % and 9 % in the wet and dry periods, respectively. Low rates of soil carbon loss combined with relatively high belowground carbon allocation (i.e., 38 % of canopy CO2 uptake) and low sensitivity to temperature help explain the high soil organic carbon accumulation and the relatively high ecosystem CUE of the dry forest.


2019 ◽  
Vol 70 (3) ◽  
pp. 616-629
Author(s):  
Ji Chen ◽  
Yuefang Zhang ◽  
Yiqi Luo ◽  
Xuhui Zhou ◽  
Yu Jiang ◽  
...  

2008 ◽  
Vol 9 (1) ◽  
pp. 29-37 ◽  
Author(s):  
E. Lellei-Kovács ◽  
E. Kovács-Láng ◽  
T. Kalapos ◽  
Z. Botta-Dukát ◽  
S. Barabás ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document