scholarly journals Seasonal and elevational variability in the induction of specialized compounds from mountain birch (Betula pubescens var. pumila) by winter moth larvae (Operophtera brumata)

2021 ◽  
Author(s):  
Ingvild Ryde ◽  
Tao Li ◽  
Jolanta Rieksta ◽  
Bruna Marques dos Santos ◽  
Elizabeth H J Neilson ◽  
...  

Abstract The mountain birch (Betula pubescens var. pumila (L.)) forest in the Subarctic is periodically exposed to insect outbreaks, which are expected to intensify due to climate change. To mitigate abiotic and biotic stresses, plants have evolved chemical defenses, including volatile organic compounds (VOCs) and non-volatile specialized compounds (NVSCs). Constitutive and induced production of these compounds, however, are poorly studied in Subarctic populations of mountain birch. Here, we assessed the joint effects of insect herbivory, elevation, and season on foliar VOC emissions and NVSC contents of mountain birch. VOCs were sampled in situ by an enclosure technique and analyzed by gas chromatography–mass spectrometry. NVSCs were analyzed by liquid chromatography–mass spectrometry using an untargeted approach. At low elevation, experimental herbivory by winter moth larvae (Operophtera brumata) increased emissions of monoterpenes and homoterpenes over the three-week feeding period, and sesquiterpenes and green leaf volatile in the end of the feeding period. At high elevation, however, herbivory augmented only homoterpene emissions. The more pronounced herbivory effects at low elevation were likely due to higher herbivory intensity. Of the individual compounds, linalool, ocimene, 4,8-dimethylnona-1,3,7-triene, 2-methyl butanenitrile, and benzyl nitrile were among the most responsive compounds in herbivory treatments. Herbivory also altered foliar NVSC profiles at both low and high elevations, with the most responsive compounds likely belonging to fatty acyl glycosides and terpene glycosides. Additionally, VOC emissions from non-infested branches were higher at high than low elevation, particularly during the early season, which was mainly driven by phenological differences. VOC emissions varied substantially over the season, largely reflecting the seasonal variations in temperature and light levels. Our results suggest that if insect herbivory pressure continues to rise in the mountain birch forest with ongoing climate change, it will significantly increase VOC emissions with important consequences for local trophic interactions and climate.

2016 ◽  
Vol 3 (10) ◽  
pp. 160361 ◽  
Author(s):  
Anne l-M-Arnold ◽  
Maren Grüning ◽  
Judy Simon ◽  
Annett-Barbara Reinhardt ◽  
Norbert Lamersdorf ◽  
...  

Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests ( Quercus petraea  L.) that were heavily infested by the leaf herbivores winter moth ( Operophtera brumata  L.) and mottled umber ( Erannis defoliaria  L.). In infested forests, total net canopy-to-soil fluxes of C and N deriving from insect faeces, leaf litter and throughfall were 30- and 18-fold higher compared with uninfested oak forests, with 4333 kg C ha −1 and 319 kg N ha −1 , respectively, during a pest outbreak over 3 years. In infested forests, C and N levels in soil solutions were enhanced and C/N ratios in humus layers were reduced indicating an extended canopy-to-soil element pathway compared with the non-infested forests. In a microcosm incubation experiment, soil treatments with insect faeces showed 16-fold higher fluxes of carbon dioxide and 10-fold higher fluxes of dissolved organic carbon compared with soil treatments without added insect faeces (control). Thus, the deposition of high rates of nitrogen and rapidly decomposable carbon compounds in the course of forest pest epidemics appears to stimulate soil microbial activity (i.e. heterotrophic respiration), and therefore, may represent an important mechanism by which climate change can initiate a carbon cycle feedback.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3208 ◽  
Author(s):  
Andrzej Białowiec ◽  
Monika Micuda ◽  
Antoni Szumny ◽  
Jacek Łyczko ◽  
Jacek Koziel

In this work, for the first time, the volatile organic compound (VOC) emissions from carbonized refuse-derived fuel (CRDF) were quantified on a laboratory scale. The analyzed CRDF was generated from the torrefaction of municipal waste. Headspace solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) was used to identify 84 VOCs, including many that are toxic, e.g., derivatives of benzene or toluene. The highest emissions were measured for nonanal, octanal, and heptanal. The top 10 most emitted VOCs contributed to almost 65% of the total emissions. The VOC mixture emitted from torrefied CRDF differed from that emitted by other types of pyrolyzed biochars, produced from different types of feedstock, and under different pyrolysis conditions. SPME was a useful technology for surveying VOC emissions. Results provide an initial database of the types and relative quantities of VOCs emitted from CRDF. This data is needed for further development of CRDF technology and comprehensive assessment of environmental impact and practical storage, transport, and potential adoption of CRDF as means of energy and resource recovery from municipal waste.


2010 ◽  
Vol 365 (1555) ◽  
pp. 3161-3176 ◽  
Author(s):  
Michael C. Singer ◽  
Camille Parmesan

Climate change alters phenological relations between interacting species. We might expect the historical baseline, or starting-point, for such effects to be precise synchrony between the season at which a consumer most requires food and the time when its resources are most available. We synthesize evidence that synchrony was not the historical condition in two insect–plant interactions involving Edith's checkerspot butterfly ( Euphydryas editha ), the winter moth ( Operophtera brumata ) and their host plants. Initial observations of phenological mismatch in both systems were made prior to the onset of anthropogenically driven climate change. Neither species can detect the phenology of its host plants with precision. In both species, evolution of life history has involved compromise between maximizing fecundity and minimizing mortality, with the outcome being superficially maladaptive strategies in which many, or even most, individuals die of starvation through poor synchrony with their host plants. Where phenological asynchrony or mismatch with resources forms the starting point for effects of anthropogenic global warming, consumers are particularly vulnerable to impacts that exacerbate the mismatch. This vulnerability likely contributed to extinction of a well-studied metapopulation of Edith's checkerspot, and to the skewed geographical pattern of population extinctions underlying a northward and upward range shift in this species.


2011 ◽  
Vol 101 (6) ◽  
pp. 705-714 ◽  
Author(s):  
O.P.L. Vindstad ◽  
S.B. Hagen ◽  
J.U. Jepsen ◽  
L. Kapari ◽  
T. Schott ◽  
...  

AbstractPopulation cycles of the winter moth (Operophtera brumata) in sub-arctic coastal birch forests show high spatiotemporal variation in amplitude. Peak larval densities range from levels causing little foliage damage to outbreaks causing spatially extensive defoliation. Moreover, outbreaks typically occur at or near the altitudinal treeline. It has been hypothesized that spatiotemporal variation in O. brumata cycle amplitude results from climate-induced variation in the degree of phenological matching between trophic levels, possibly between moth larvae and parasitoids. The likelihood of mismatching phenologies between larvae and parasitoids is expected to depend on how specialized parasitoids are, both as individual species and as a guild, to attacking specific larval developmental stages (i.e. instars). To investigate the larval instar-specificity of parasitoids, we studied the timing of parasitoid attacks relative to larval phenology. We employed an observational study design, with sequential sampling over the larval period, along an altitudinal gradient harbouring a pronounced treeline outbreak of O. brumata. Within the larval parasitoid guild, containing seven species groups, the timing of attack by different groups followed a successional sequence throughout the moth's larval period and each group attacked 1–2 instars. Such phenological diversity within parasitoid guilds may lower the likelihood of climate-induced trophic mismatches between victim populations and many/all of their enemies. Parasitism rates declined with increasing altitude for most parasitoid groups and for the parasitoid guild as a whole. However, the observed spatiotemporal parasitism patterns provided no clear evidence for or against altitudinal mismatch between larval and parasitoid phenology.


Sign in / Sign up

Export Citation Format

Share Document