scholarly journals Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest

Author(s):  
Alexander T. Fotis ◽  
Peter S. Curtis
1997 ◽  
Vol 62 ◽  
Author(s):  
R. Samson ◽  
S. Follens ◽  
R. Lemeur

A  multi-layer model (FORUG) was developed, to simulate the canopy  photosynthesis of a mixed deciduous forest during the growing season.  Measured photosynthesis parameters, for beech (Fagus  sylvatica), oak (Quercus  robur) and ash (Fraxinus  excelsior), were used as input to the model. This  information at the leaf level is then scaled up to the level of the canopy,  taking into account the radiation profiles (diffuse and direct PAR) in the  canopy, the vertical LAI distribution, the evolution of the LAI and the  photosynthesis parameters during the growing season, and the temperature  dependence of the latter parameters.


2016 ◽  
Vol 12 (2) ◽  
pp. 117-124
Author(s):  
Judit Sárándi-Kovács ◽  
László Nagy ◽  
Ferenc Lakatos ◽  
György Sipos

Abstract During a regular survey of declining forests in 2011, sudden dieback symptoms were observed on scattered wild cherry trees (Prunus avium) in a mixed deciduous forest stand, located in the flood plain area of the Rába River, in northwest Hungary. In this study, we correlated both soil conditions and presence of Phytophthora spp. to dieback of cherry trees. Two Phytophthora species, P. polonica and P. plurivora, were isolated from the rhizosphere soil of the dying trees. By contrast, only P. polonica was recovered from the necrotic tissues of symptomatic roots. Stem and root inoculation tests on cherry seedlings showed pathogenicity of both species, although P. polonica proved to be more virulent. This is the first report of natural infections of P. polonica.


Nature ◽  
1950 ◽  
Vol 165 (4184) ◽  
pp. 23-24
Author(s):  
E. P. STEBBING

2016 ◽  
Vol 66 (11) ◽  
pp. 4850-4855 ◽  
Author(s):  
Wipaporn Ngaemthao ◽  
Suwanee Chunhametha ◽  
Chanwit Suriyachadkun

Behaviour ◽  
2007 ◽  
Vol 144 (10) ◽  
pp. 1161-1178 ◽  
Author(s):  
Torben Dabelsteen ◽  
Simon Pedersen ◽  
Helene Lampe ◽  
Ole Larsen

AbstractIn the hole-nesting pied flycatcher, Ficedula hypoleuca, a male may become polyterritorial after attracting a primary female. However, the female may recognize her mate's song and attack other females that associate with him. Differences in sound degradation amongst different habitats and within nestboxes may, therefore, be important for male and female behaviour since the male may have to move outside female hearing range to avoid harassment, and the female may have to listen for the mate to be able to locate competing females. This may be difficult from inside the nest cavity. We used ten common song elements to test sound degradation with distance in a mixed coniferous and a mixed deciduous forest, measuring broadcast sounds both inside and outside nestboxes. On average, sound degradation increased to a larger extent with distance in the deciduous than the coniferous forest. This is consistent with the shorter polyterritorial distances of flycatchers in the deciduous forest. Furthermore, song degradation was stronger inside the nestboxes. Being inside may, therefore, reduce a female's possibility of detecting and recognizing songs. This may be one reason why female pied flycatchers spend little time within the nest cavity before incubation unlike some other hole nesting species.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 318
Author(s):  
Guangman Song ◽  
Quan Wang ◽  
Jia Jin

A clear understanding of the dynamics of photosynthetic capacity is crucial for accurate modeling of ecosystem carbon uptake. However, such dynamical information is hardly available and has dramatically impeded our understanding of carbon cycles. Although tremendous efforts have been made in coupling the dynamic information of photosynthetic capacity into models, using “proxies” rooted from the close relationships between photosynthetic capacity and other available leaf parameters remains the popular selection. Unfortunately, no consensus has yet been reached on such “proxies”, leading them only applicable to limited cases. In this study, we aim to identify if there are close relationships between the photosynthetic capacity (represented by the maximum carboxylation rate, Vcmax) and leaf traits for mature broadleaves within a cold temperature deciduous forest. This is based on a long-term in situ dataset including leaf chlorophyll content (Chl), leaf nitrogen concentration (Narea, Nmass), leaf carbon concentration (Carea, Cmass), equivalent water thickness (EWT), leaf mass per area (LMA), and leaf gas exchange measurements from which Vcmax was derived, for both sunlit and shaded leaves during leaf mature periods from 2014 to 2019. The results show that the Vcmax values of sunlit and shaded leaves were relatively stable during these periods, and no statistically significant interannual variations occurred (p > 0.05). However, this is not applicable to specific species. Path analysis revealed that Narea was the major contributor to Vcmax for sunlit leaves (0.502), while LMA had the greatest direct relationship with Vcmax for shaded leaves (0.625). The LMA has further been confirmed as a primary proxy if no leaf type information is available. These findings provide a promising way to better understand photosynthesis and to predict carbon and water cycles in temperate deciduous forests.


Sign in / Sign up

Export Citation Format

Share Document