Song degradation in the hole-nesting pied flycatcher Ficedula hypoleuca: Implications for polyterritorial behaviour in contrasting habitat-types

Behaviour ◽  
2007 ◽  
Vol 144 (10) ◽  
pp. 1161-1178 ◽  
Author(s):  
Torben Dabelsteen ◽  
Simon Pedersen ◽  
Helene Lampe ◽  
Ole Larsen

AbstractIn the hole-nesting pied flycatcher, Ficedula hypoleuca, a male may become polyterritorial after attracting a primary female. However, the female may recognize her mate's song and attack other females that associate with him. Differences in sound degradation amongst different habitats and within nestboxes may, therefore, be important for male and female behaviour since the male may have to move outside female hearing range to avoid harassment, and the female may have to listen for the mate to be able to locate competing females. This may be difficult from inside the nest cavity. We used ten common song elements to test sound degradation with distance in a mixed coniferous and a mixed deciduous forest, measuring broadcast sounds both inside and outside nestboxes. On average, sound degradation increased to a larger extent with distance in the deciduous than the coniferous forest. This is consistent with the shorter polyterritorial distances of flycatchers in the deciduous forest. Furthermore, song degradation was stronger inside the nestboxes. Being inside may, therefore, reduce a female's possibility of detecting and recognizing songs. This may be one reason why female pied flycatchers spend little time within the nest cavity before incubation unlike some other hole nesting species.

2020 ◽  
Author(s):  
Barry Taylor ◽  
David Christie

1997 ◽  
Vol 62 ◽  
Author(s):  
R. Samson ◽  
S. Follens ◽  
R. Lemeur

A  multi-layer model (FORUG) was developed, to simulate the canopy  photosynthesis of a mixed deciduous forest during the growing season.  Measured photosynthesis parameters, for beech (Fagus  sylvatica), oak (Quercus  robur) and ash (Fraxinus  excelsior), were used as input to the model. This  information at the leaf level is then scaled up to the level of the canopy,  taking into account the radiation profiles (diffuse and direct PAR) in the  canopy, the vertical LAI distribution, the evolution of the LAI and the  photosynthesis parameters during the growing season, and the temperature  dependence of the latter parameters.


2014 ◽  
Vol 128 (3) ◽  
pp. 272 ◽  
Author(s):  
Gilbert Proulx

Late-winter habitat use by the Fisher, Pekania pennanti (Erxleben, 1777) in northwestern Saskatchewan was assessed in February 2009, 2011, and 2012. A total of 78 Fisher tracks were recorded over 60 300 m of snowshoe surveys. Fisher tracks were significantly less frequent than expected in Tamarack (Larix laricina [Du Roi] K. Koch) stands with > 40% crown closure and mainly 0–10 m trees (P < 0.05) and in open areas. Fishers used other habitat types equal to availability, including muskeg and coniferous, mixed, and deciduous forest stands. Maintaining mosaics of forest stands of different seral stages interspersed with muskeg would meet the late-winter habitat needs of Fishers in the Boreal Plains Ecozone of northwestern Saskatchewan.


2006 ◽  
Vol 37 (6) ◽  
pp. 555-560 ◽  
Author(s):  
Juan Moreno ◽  
Judith Morales ◽  
Elisa Lobato ◽  
Santiago Merino ◽  
Gustavo Tomás ◽  
...  

2016 ◽  
Vol 12 (2) ◽  
pp. 117-124
Author(s):  
Judit Sárándi-Kovács ◽  
László Nagy ◽  
Ferenc Lakatos ◽  
György Sipos

Abstract During a regular survey of declining forests in 2011, sudden dieback symptoms were observed on scattered wild cherry trees (Prunus avium) in a mixed deciduous forest stand, located in the flood plain area of the Rába River, in northwest Hungary. In this study, we correlated both soil conditions and presence of Phytophthora spp. to dieback of cherry trees. Two Phytophthora species, P. polonica and P. plurivora, were isolated from the rhizosphere soil of the dying trees. By contrast, only P. polonica was recovered from the necrotic tissues of symptomatic roots. Stem and root inoculation tests on cherry seedlings showed pathogenicity of both species, although P. polonica proved to be more virulent. This is the first report of natural infections of P. polonica.


Nature ◽  
1950 ◽  
Vol 165 (4184) ◽  
pp. 23-24
Author(s):  
E. P. STEBBING

Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


2013 ◽  
Vol 9 (3) ◽  
pp. 1211-1219 ◽  
Author(s):  
A. V. Lozhkin ◽  
P. M. Anderson

Abstract. Preliminary analyses of Lake El'gygytgyn sediment indicate a wide range of ecosystem responses to warmer than present climates. While palynological work describing all interglacial vegetation is ongoing, sufficient data exist to compare recent warm events (the postglacial thermal maximum, PGTM, and marine isotope stage, MIS5) with "super" interglaciations (MIS11, MIS31). Palynological assemblages associated with these climatic optima suggest two types of vegetation responses: one dominated by deciduous taxa (PGTM, MIS5) and the second by evergreen conifers (MIS11, MIS31). MIS11 forests show a similarity to modern Picea–Larix–Betula–Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the boreal forest of the lower Amur valley (southern Russian Far East). Despite vegetation differences during these thermal maxima, all glacial–interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula–Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra before the incidence of maximum warmth underscores the importance of this biome for modeling efforts. The El'gygytgyn data also suggest a possible elimination or massive reduction of Arctic plant communities under extreme warm-earth scenarios.


Sign in / Sign up

Export Citation Format

Share Document