scholarly journals Pruning Western White Pine in British Columbia to Reduce White Pine Blister Rust Losses: 10-Year Results

1998 ◽  
Vol 13 (2) ◽  
pp. 60-63 ◽  
Author(s):  
R. S. Hunt

Abstract Survey lines were located in areas that had been pruned to control blister rust (Cronartium ribicola) 10 yr previously and adjacent control (unpruned) areas in 10 stands of western white pine. Stands were classified as densely stocked, moderately stocked, or open. Cankers were tallied and their position noted. The success of pruning varied from stand to stand. Since the stands had not been pruned at an early age, there was only a 4 and 5% reduction in threatening cankers and stem cankers respectively, as few new cankers were initiated. Stands with the greatest increase in cankering had Ribes spp., were open grown, or possessed a high component of small white pine. Repruning these specific stands may be worthwhile, but in general, entering stands again to do either pruning or scribing would produce few additional healthy trees. Doing both treatments, however, may significantly enhance the number of healthy stems. To optimize the benefits of pruning, stands should be entered early and pruning should continue until a sufficient number of stems are pruned to a height of 3 m to ensure full stocking. Other species may be impediments to spore movement within stands, and thus they should not be pruned. Dense stands initially had less rust than open stands and could be entered later, but once spaced, they also need to be pruned to 3 m to minimize rust infection. West. J. Appl. For: 13(2):60-63.

2001 ◽  
Vol 2 (1) ◽  
pp. 10 ◽  
Author(s):  
Otis C. Maloy

White pine blister rust is probably the most destructive disease of five-needle (white) pines in North America. The rust fungus cannot spread from pine to pine but requires an alternate host, Ribes species, to complete the disease cycle. Several management tools might enable the reestablishment of western white pine stands. Accepted for publication 20 September 2001. Published 24 September 2001.


1998 ◽  
Vol 28 (3) ◽  
pp. 412-417 ◽  
Author(s):  
Abul KM Ekramoddoullah ◽  
Joanne J Davidson ◽  
Doug W Taylor

A 19-kDa protein, Pin m III, was recently shown to be associated with overwintering and frost hardiness of western white pine (Pinus monticola Dougl. ex D. Don) seedlings. Here, we report that this protein is up-regulated by the fungus Cronartium ribicola Fisch, the causal agent of white pine blister rust in western white pine trees. Between 1991 and 1994, bark samples of mature western white pine trees (resistant with no stem cankers and susceptible with stem cankers) were collected in winter, spring, and fall. Proteins were extracted and analyzed by Western immunoblot utilizing specific rabbit polyclonal anti-Pin l I (a homologue of Pin m III) antibodies. During all collection dates, but particularly in the spring, susceptible trees had more Pin m III than resistant trees. In July 1995, 43 previously inoculated 7-year-old white pine seedlings were also analyzed. In all susceptible seedlings (cankered) tested, cankered tissue had high levels of Pin m III, and samples collected from the outside edge of the canker margin had low levels of Pin m III; this protein was also detected in some healthy bark of cankered trees. Since the level of Pin m III in healthy white pine trees is normally lowest in summer months, the high level Pin m III in summer samples of infected tissues is a consequence of the fungal infection.


1982 ◽  
Vol 58 (3) ◽  
pp. 136-138 ◽  
Author(s):  
R. S. Hunt

White pine blister rust (Cronartium ribicola J.C. Fisch. ex Rab.) branch cankers on 12- to 30-year-old western white pines (Pinus monticula Dougl.) in British Columbia were measured for distance from the stem, and cankers on branches and stems were measured for height above ground. Most stem cankers originated from branch cankers within 60 cm of the stem and within 2.5 m of the ground. Trees on slopes tended to have cankers higher into the crown than those on flat sites. Removal of lower branches from young western white pines will greatly reduce the possibility of death from blister rust infection. Treatment recommendations are given for western white pine as a minor or major component of the stand. Keywords: Cronartium; Pinus monticola


1985 ◽  
Vol 61 (6) ◽  
pp. 484-488 ◽  
Author(s):  
R. S. Hunt ◽  
J. F. Manville ◽  
E. von Rudloff ◽  
M. S. Lapp

Cluster analyses of relative terpene abundance in foliage of western white pine (Pinus monticola Dougl.) trees from throughout the Pacific Northwest geographic range of the species were produced. Terpene patterns were randomly distributed among populations; no geographic or site trends were evident. Although blister rust is devastating to stands, the gene pool is widely distributed and may well be preserved without establishing gene banks.About 40-50 trees selected at random would yield offspring with nearly all possible terpene patterns characteristic of the species and would thus constitute a broad genetic base. Therefore seed orchards do not necessarily need to be composed of many individuals, rather, they should contain highly selected individuals with multiple desirable traits including multiple blister rust resistance mechanisms. Key words: terpenes, dendrogram


1972 ◽  
Vol 104 (11) ◽  
pp. 1713-1715 ◽  
Author(s):  
Malcolm M. Furniss ◽  
R. D. Hungerford ◽  
E. F. Wicker

AbstractInsects present in western white pine blister rust cankers in northern Idaho were: two weevils, Cylindrocopturus n. sp. and Pissodes sp. near swartzi Hopk.; two bark beetles, Pityophthorus sp. near nitidulus (Mann.), and Procryphalus ? sp.; a drosophilid fly, Paracacoxenus guttatus Hardy and Wheeler; and a phycitid moth, Dioryctria abietivorella (Grote). Mites associated with insect infestation were: Lasioseius ? n. sp., Ameroseius longitrichus Hirschmann, and Histiogaster arborsignis Woodring.


Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 595-595 ◽  
Author(s):  
D. W. Johnson ◽  
W. R. Jacobi

In June 1999, a survey was conducted north and west of Redfeather Lakes, CO (≈64 km northwest of Fort Collins) to determine the extent of white pine blister rust, caused by Cronartium ribicola. To date the disease has not been reported in Colorado on any of the known hosts. The survey was initiated after the disease was reported on limber pine, Pinus flexilis, in 1998. A total of 65 sections were traveled by driving passable roads within three townships in Larimer County in northern Colorado. Infected limber pines were observed in nine sections. Incidence of infected trees ranged from 3 to 50% of trees sampled. A minimum of 10 trees was sampled at each location. Where trees were more abundant, 40 trees were sampled. The highest incidence of blister rust was observed near the Colorado and Wyoming state line along Cherokee Park Road. Both main stem and branch cankers were observed. Cankers appeared to be 3 to 5 years old. Mortality of entire trees was not observed. Ribes spp. were observed in the vicinity of infected limber pines. However, no infection was noted on these alternate rust hosts. Infected trees were observed 18 km south of the Colorado and Wyoming state line. The southward spread of the disease into northern Colorado from infection sites in Wyoming appears to have proceeded slowly since reports of the disease in southern Wyoming during the 1970s (1). Blister rust has the potential to spread throughout the range of white pines in Colorado, which includes scattered populations of both limber and bristlecone pines, P. aristata, located along the Continental Divide from Wyoming to the Colorado and New Mexico state line. References: (1) D. B. Brown. Plant Dis. Rep. 62:905, 1978.


Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 594-594 ◽  
Author(s):  
J. P. Smith ◽  
J. T. Hoffman ◽  
K. F. Sullivan ◽  
E. P. Van Arsdel ◽  
D. Vogler

White pine blister rust, caused by Cronartium ribicola Fisch., was found in 1997 infecting white pines (genus Pinus, subgenus Strobus) at two locations in the Carson Range of western Nevada. Rust incidence, infection age, damage to trees, rust phenology, and host distribution were evaluated at one of these locations and a nearby location in California in 1998. At the first location (39.3°N, 119.9°W), C. ribicola was found infecting 24 of 49 whitebark pines (P. albicaulis Engelm.) near Mt. Rose Summit on Highway 27 at 2,710 m elevation, ≈6 km northeast of Incline Village, Washoe County, NV. Among infected trees, 33% had only branch cankers, 54% had live stem cankers, and 12% had stem cankers that had killed portions of trees distal to cankers. No trees had died from infection. At the second location (39.1°N, 119.9°W), we found only 6 of 50 (12%) infected western white pines (P. monticola Dougl.) near Genoa Peak (≈2,750 m elevation), 3 km east of Lake Tahoe, Douglas County, NV; however, stem cankers occurred on 4 of the 6 infected trees. In September 1998, whitebark pines at Mt. Rose and Tahoe Meadows (2,550 m elevation, 1.5 km southwest of Mt. Rose Summit) were examined, and the following was observed: (i) aeciospore production was at its peak, indicating that sporulation can occur exceptionally late in the season in this region; (ii) signs of blister rust infection were absent on the telial hosts of C. ribicola (Ribes cereum, R. montigenum, and R. nevadense) at both locations; (iii) ≈80% of the cankers occurred on host wood produced in 1978 and 1979; and (iv) the oldest cankers originated on wood produced in 1968 and the youngest on wood produced in 1980. In October 1998, infected western white pines were examined at a location (2,650 m elevation) ≈30 km north of Lake Tahoe on Babbitt Peak, Sierra County, CA (39.6°N, 120.1°W). At this location, no trees had died from infection, fresh aeciospores were abundant on live cankers, R. montigenum and R. cereum were present but did not show signs of infection, and 19 of 20 cankers examined were on wood produced between 1978 and 1980. White pine blister rust was not found at any of 10 other locations examined throughout Nevada from 1995 to 1997. This is believed to be the first documented report of C. ribicola infecting white pines in Nevada and the easternmost extension of blister rust in the Sierra Nevada Region. These observations suggest that our understanding of blister rust spread and infection dynamics east of the Sierra Nevada crest is incomplete and that future surveys and research in this region must address, among other issues, timing of aeciospore production on pine, and the possibility of blister rust spread into the Great Basin.


Author(s):  
G. F. Laundon

Abstract A description is provided for Cronartium ribicola. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Pycnia and aecia on numerous members of Pinus sect. Strobus (= sect. Cembra) (white pines) especially P. albicaulis, P. lambertiana, P. monticola and P. strobus; uredia and telia on almost all Ribes and Grossularia species, the cultivated black currant being particularly susceptible. DISEASE: White pine blister rust, currant rust. Causes stem cankers on pines and leaf lesions on currants. GEOGRAPHICAL DISTRIBUTION: Asia, Europe and N. America (CMI Map 6, ed. 3). TRANSMISSION: Overwinters almost exclusively on pines from which aeciospores may be blown hundreds of kilometres (7: 813) to infect Ribes leaves through stomata (Spaulding, 1922). In contrast, basidiospores (38: 393) travel only a few hundred metres to infect pine needles through stomata (Patton & Johnson, 1970), from where the mycelium grows into the stem to form cankers. The importation of large quantities of white pine seedlings from Europe at the turn of the century carried the disease to N. America (Spaulding, 1922; 1929).


Sign in / Sign up

Export Citation Format

Share Document