scholarly journals Dwarf Mistletoe Pruning May Induce Douglas-Fir Beetle Attacks

2000 ◽  
Vol 15 (1) ◽  
pp. 34-36 ◽  
Author(s):  
James S. Hadfield ◽  
Paul T. Flanagan

Abstract Fresh attacks of Douglas-firs (Pseudotsuga menziesii) by Douglas-fir beetles (Dendroctonus pseudotsugae) were found in a campground that had trees pruned to remove Douglas-fir dwarf mistletoe (Arceuthobium douglasii) infections. All Douglas-firs with a diameter at breast height (dbh) of at least 12.7 cm were examined. Beetle attacks were found on 41% of the pruned trees and 5% of the unpruned trees. Among pruned trees, both the average number of branches pruned and the average dbh were greater in trees attacked by Douglas-fir beetles than in unattacked trees. West. J. Appl. For. 15(1):34-36.

Author(s):  

Abstract A new distribution map is provided for Dendroctonus pseudotsugae Hopkins Coleoptera: Scolytidae Hosts: Mainly Douglas fir (Pseudotsuga menziesii), also other Pseudotsuga spp. Information is given on the geographical distribution in NORTH AMERICA, Canada, Alberta, British Columbia, Mexico, USA, Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Texas, Utah, Washington, Wyoming.


2008 ◽  
Vol 54 (No. 7) ◽  
pp. 321-332 ◽  
Author(s):  
P. Kantor

: The study evaluates production parameters (height, diameter at breast height, volume) of Douglas fir (<I>Pseudotsuga menziesii</I> [Mirb.] Franco) at mesotrophic sites of the Křtiny Training Forest Enterprise in mature stands. In total, 29 mixed stands were assessed with the registered proportion of Douglas fir at an age of 85 to 136 years. Comparing the 10 largest Douglas firs with the 10 largest spruces or larches higher, and as a rule markedly higher, production potential of introduced Douglas fir was found in all assessed stands. There were also groups of trees where the volume of Douglas fir was twice to 3 times higher than the volume of spruce or larch (see Tabs. 5 to 10). For example, in stand 177B11, the mean volume of 9.12 m<sup>3</sup> was recorded in the 10 largest Douglas fir trees but the volume of spruce reached only 3.17 m<sup>3</sup> and the volume of larch was 3.70 m<sup>3</sup>. Differences in mensurational parameters of Douglas fir found on the one hand and of Norway spruce (<I>Picea abies</I> [L.] Karst.) or European larch (<I>Larix decidua</I> Mill.) on the other hand compared by ANOVA tests were statistically highly significant. Annual ring analyses have shown that at present the volume increment of particular Douglas fir trees ranges from 0.12 to 0.16 m<sup>3</sup> per year in mature stands (i.e. about 1.5 m<sup>3</sup> every 10 years).


1990 ◽  
Vol 5 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Douglas A. Maguire ◽  
David W. Hann

Abstract A segmented polynomial taper equation for southwestern Oregon Douglas-fir (Pseudotsuga menziesii) predicts double bark thickness (dbt) at any point above breast height. Below breast height predictions assume conformity to a neiloid frustrum. The equations facilitate estimation of inside bark diameter (dib) given outside bark (dob) measurements. Bark volume and bark biomass can also be estimated when supplemented with existing dib taper equations developed for southwestern Oregon. West J. Appl. For. 5(1):5-8.


2020 ◽  
Vol 113 (4) ◽  
pp. 1858-1863 ◽  
Author(s):  
Gabriel G Foote ◽  
Christopher J Fettig ◽  
Darrell W Ross ◽  
Justin B Runyon ◽  
Tom W Coleman ◽  
...  

Abstract Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, trees and stands can be protected from Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (DFB)-caused mortality by application of synthetic formulations of the beetle’s antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH). A biodegradable formulation of MCH, SPLAT MCH, was developed and evaluated for protecting individual Douglas-fir trees and small stands from colonization and mortality by DFB. In an individual-tree experiment in Idaho, both MCH bubble capsules and SPLAT MCH significantly reduced the proportion of treated trees colonized and killed by DFB compared to untreated controls. SPLAT MCH was as effective as MCH bubble capsules for protecting individual trees. Both MCH bubble capsules and SPLAT MCH significantly reduced the proportion of trees colonized and killed by DFB within 0.04-ha circular plots surrounding each treated tree compared to untreated controls. In 0.41 ha stands in New Mexico, both MCH bubble capsules and SPLAT MCH significantly reduced the proportion of trees colonized and killed by DFB compared to untreated controls, again with no differences observed between MCH treatments. In a similar stand level trial in Idaho, neither MCH treatment significantly reduced the proportion of trees colonized by DFB, and only MCH bubble capsules significantly reduced levels of tree mortality compared to untreated controls, but no significant difference was observed between SPLAT MCH and MCH bubble capsules. Overall, the results indicate that SPLAT MCH is as effective as MCH bubble capsules for protecting individual trees and small stands of Douglas-fir from DFB-caused mortality.


2005 ◽  
Vol 20 (3) ◽  
pp. 149-153 ◽  
Author(s):  
Terry L. Shore ◽  
William G. Riel ◽  
Les Safranyik ◽  
Julie Castonguay

Abstract The Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins) can cause significant mortality to mature Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco) during epidemics. Treatment methods are required to reduce local beetle populations to less-damaging levels. We conducted a study to compare the effect on beetle survival of peeling bark from infested logs at two times of year. By Aug., all beetles in bark from logs peeled in July were dead compared with 155.2 beetles/m2 bark in unpeeled logs. In bark from logs peeled at the end of Aug. and left over winter, there were 3.4 beetles/m2 of bark surface compared with 62.3/m2 in unpeeled logs. It was concluded that peeling logs reduces beetle populations, particularly if done early in the summer. We also examined beetle survival in stumps over winter and found that a mean of 70.4 beetles/stump, or 125.6/m2 of stump surface survived winter. It is estimated that it would take beetles emerging from 24 stumps to kill a tree. West. J. Appl. For. 20(3):149–153.


1989 ◽  
Vol 4 (4) ◽  
pp. 116-119 ◽  
Author(s):  
Linda S. Heath ◽  
H. N. Chappell

Abstract Response surface methodology was used to estimate six-year volume growth response to 1 application of 200 lb nitrogen per acre in unthinned and thinned Douglas-fir (Pseudotsuga menziesii) stands of breast height age (bha) 25 years or less. Regional mean fertilizer response was 16% in unthinned stands and 20% in thinned stands. Site index had an increasingly inverse effect on response as basal area increased in both unthinned and thinned stands. Response varied little over site index in regions of low basal area, decreased moderately as site index increased in the intermediate region, and decreased rapidly in the high basal area region. West. J. Appl. For. 4(4):116-119, October 1989.


1988 ◽  
Vol 18 (6) ◽  
pp. 803-806 ◽  
Author(s):  
W. G. Thies ◽  
E. E. Nelson

Eight treatments involving stump removal by bulldozing in combination with nitrogen fertilization were applied to 0.04-ha circular plots in a clear-cut on the Olympic Peninsula, Washington. Treatments included stump removal (either all stumps removed or the plot left undisturbed) and broadcast fertilization with ammonium nitrate (0, 336, 672, or 1345 kg N ha−1). Diameter at breast height and height of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) seedlings, planted several months after treatment, were recorded five and eight seasons after outplanting. The results showed that either bulldozing stumps from the site or fertilizing with ammonium nitrate increased growth of seedlings through their eighth growing season. After eight growing seasons, bulldozing had increased seedling height by 23% and diameter at breast height by 43%; fertilizing produced increases of 13% in height and 17% in diameter at breast height.


1981 ◽  
Vol 113 (4) ◽  
pp. 337-340 ◽  
Author(s):  
W. W. Nijholt ◽  
L. H. McMullen ◽  
L. Safranyik

AbstractPine oil, a by-product of sulphate wood pulping, protected pheromone-baited, living Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), lodgepole pine (Pinus contorta Dougl.), and spruce (Picea glauca (Moench) Voss - P. engelmannii Parry hybrids) from attack by Douglas-fir beetle (Dendroctonus pseudotsugae Hopk.), mountain pine beetle (D. ponderosa Hopk.), and spruce beetle (D. rufipennis (Kirby)), respectively. Pine oil also protected surrounding trees and reduced attack incidence on Douglas-fir, lodgepole pine, and spruce within at least a 10 m radius. α-Terpineol, one of the constituents of the pine oil mixture, was less effective.


1995 ◽  
Vol 127 (6) ◽  
pp. 805-811 ◽  
Author(s):  
Darrell W. Ross ◽  
Gary E. Daterman

AbstractThe Douglas-fir beetle (Dendroctonus pseudotsugae) antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH), was applied to stands at high risk for infestation. The MCH was applied in a bubble capsule formulation to plots ranging from 2.1 to 2.6 ha in size at rates of 45–76 g/ha. Catches of Douglas-fir beetles in attractant-baited Lindgren funnel traps located at the plot centers were significantly lower on MCH-treated plots compared with untreated plots. In contrast, catches of the most abundant predator, Thanasimus undatulus (Say), were unaffected by the MCH treatment. The percentage of Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] trees ≥20 cm dbh that were mass attacked was significantly lower on treated plots (0.2%) compared with untreated plots (8.5%). MCH alone was effective in reducing the probability of Douglas-fir beetle infestations occurring in high risk stands.


Sign in / Sign up

Export Citation Format

Share Document