The Effect and Extent of Railroad Tie Drives in Streams of Southeastern Wyoming

1994 ◽  
Vol 9 (4) ◽  
pp. 125-130 ◽  
Author(s):  
Michael K. Young ◽  
David Haire ◽  
Michael A. Bozek

Abstract Millions of railroad ties were floated (driven) down streams in southeastern Wyoming between 1868 and 1940. We identified 61 tie-driven streams in or near the Medicine Bow National Forest. We hypothesized that tie drives, and the stream clearing associated with driving, altered channel morphology and riparian vegetation. When comparing stream reaches of similar width and gradient, we found that tie-driven stream reaches contained less coarse woody debris and had significantly lower densities of large riparian trees than did unaffected reaches. Tie-driven reaches had lower channel complexity, a greater proportion of riffles, and fewer plunge and dammed pools than did unaffected reaches. We found significant relations among characteristics of the riparian trees, coarse woody debris, and stream channel structure. Recovery of the affected reaches may be contingent on the long-term increase in large trees in the riparian zone. West. J. Appl. For. 9(4):125-130.

2018 ◽  
Vol 32 (4) ◽  
pp. 1128-1138 ◽  
Author(s):  
Evan M. Gora ◽  
Emma J. Sayer ◽  
Benjamin L. Turner ◽  
Edmund V. J. Tanner

Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 29 ◽  
Author(s):  
Jakub Langhammer

This study examines the potential and limits of the unmanned aerial vehicles (UAVs) applicability for the monitoring of stream restoration in an urban environment. UAV imaging was used for long-term post-restoration monitoring of an urban stream. The monitoring was aimed to track the stream changes significant for the assessment of the restoration success, such as the compliance of the restoration to the plan, stability and evolution of the stream channel, or changes in stream and riparian habitats. The recurrent imaging campaigns in the restored segment of Hostavicky brook in Prague, The Czech Republic, were undertaken for three years since the restoration using the DJI Inspire 1 Pro platform. The UAV monitoring revealed that the new stream pattern substantially differs from the proposed restoration plan. Despite this, the new channel has proved stability, supported by intense grassing of the floodplain, resulting in only marginal evolution of the restored channel. The new channel proved the ability to mitigate the course of a significant flood event without significant flood spills outside the riparian zone. The UAV monitoring also revealed intense eutrophication in newly created shallow ponds with insufficient drainage. The research proved that UAV imaging is a unique source of spatial data, providing reliable information for quantitative and qualitative assessment of the stream restoration progress and success.


1994 ◽  
Vol 24 (9) ◽  
pp. 1933-1938 ◽  
Author(s):  
Michael K. Young

Following fire, changes in streamflow and bank stability in burned watersheds can mobilize coarse woody debris. In 1990 and 1991, I measured characteristics of coarse woody debris and standing riparian trees and snags in Jones Creek, a watershed burned in 1988, and in Crow Creek, an unburned watershed. The mean diameter of riparian trees along Jones Creek was less than that of trees along Crow Creek, but the coarse woody debris in Jones Creek was greater in mean diameter. Tagged debris in Jones Creek was three times as likely to move, and moved over four times as far as such debris in Crow Creek. In Jones Creek, the probability of movement was higher for tagged pieces that were in contact with the stream surface. Larger pieces tended to be more stable in both streams. It appears that increased flows and decreased bank stability following fire increased the transport of coarse woody debris in the burned watershed. Overall, debris transport in Rocky Mountain streams may be of greater significance than previously recognized.


2005 ◽  
Vol 35 (6) ◽  
pp. 1502-1506 ◽  
Author(s):  
Asko Lõhmus ◽  
Piret Lõhmus

During the 20th century, large agricultural areas in Eastern Europe became forested after their abandonment. To explore the value of these new forests for biota, we assessed volumes of coarse woody debris (CWD) on random transects in mid-aged (40–75 years old) stands. In mixed and deciduous forests that were not forested in the 1930s, downed tree (log) volumes were about two times lower than in cutover sites. The effect on snag volume depended on site type and was generally nonsignificant. Large-diameter CWD showed similar proportions in the long-term and new forest areas, but large, well-decayed trunks tended to be less frequent in the latter. No reduction of dead wood volume was found in new pine stands, 98% of which had previously been classified as mires (bogs). Hence the origin of mid-aged successional forests had affected their CWD supply (particularly logs) to some extent, but the general scarcity of CWD all over the forest land indicated much larger (at least five-fold) losses due to timber harvesting. We conclude that naturally reforested areas should not be automatically excluded from reserve establishment or other CWD-related conservation programmes.


2020 ◽  
Vol 50 (9) ◽  
pp. 925-935 ◽  
Author(s):  
Ingrid Farnell ◽  
Ché Elkin ◽  
Erica Lilles ◽  
Anne-Marie Roberts ◽  
Michelle Venter

Coarse woody debris (CWD) in the form of logs, downed wood, stumps and large tree limbs is an important structural habitat feature for many small mammal species, including the American marten (Martes americana). At a long-term experimental trial in northern temperate hemlock-cedar forests of British Columbia, Canada, we analysed the impact of varying amounts of overstory basal area retention: 0% (clearcut), 40%, 70%, and 100% (unharvested) on CWD volume, decay class, and inputs from windthrow over 27 years. We used CWD attributes (diameter, length, decay class, and height above the ground) known to be favourable for martens to create an index for assessing the impact of harvesting intensity on CWD habitat features. Stands with 70% retention had CWD attributes that resulted in CWD habitat features similar to unharvested stands. Clearcuts contained pieces that were smaller, more decayed, and closer to the ground, which contributed to a habitat that was less valuable, compared with stands that had higher retention. Over the 27-year period, windthrown trees were the majority of CWD inputs, and volume change was positively related to percent retention. Our results highlight that forest management influences CWD size and input dynamics over multiple decades, and the need for consideration of these impacts when undertaking long-term multiple-use forestry planning.


1988 ◽  
Vol 45 (12) ◽  
pp. 2080-2086 ◽  
Author(s):  
C. W. Andrus ◽  
B. A. Long ◽  
H. A. Froehlich

Large quantities of woody debris persisted 50 yr after logging and fire in stream channels of a small coastal Oregon watershed. Debris from the current stand represented only 14% of total debris volume and 8% of debris volume responsible for creating pools. The greatest number of pools were located in downstream sections of the watershed where gradient was reduced, discharge was increased, and streambed material was finer. Seventy percent of pools with a volume greater than 1.0 m3 were associated with woody debris in the channel. Composition of the current riparian forest varied with topography. Alder stands dominated moist terrace sites adjacent to channels, whereas slopes contained a mixture of alder and conifer. Study results indicate that riparian trees must be left to grow longer than 50 yr to ensure that an adequate, long-term supply of woody debris is available to stream channels. Debris from previous stands plays a crucial role in the interim and should not be removed from stream channels.


Sign in / Sign up

Export Citation Format

Share Document