Asymmetric acoustic signal recognition led to asymmetric gene flow between two parapatric frogs

Author(s):  
Yu-Wei Hsiao ◽  
Hui-Yun Tseng ◽  
Hung Ngoc Nguyen ◽  
Si-Min Lin

Abstract Correct discrimination between courtship signals could help to maintain genetic integrity between closely related species. However, asymmetric usage of signals might cause asymmetric gene flow across the contact zone. Buergeria choui and B. otai are sibling-species with a parapatric distribution pattern in Taiwan, having two narrow contact zones on the east and west sides of the island. Combining behavioural experiments with genome-wide RAD-seq analyses, we test whether the ability of signal recognition influences genetic introgression across their species boundary. The playback experiments show that all B. choui populations respond strongest to their own ‘cricket’ trills, while the western population of B. otai have evolved a strong level of reproductive character displacement by showing the inclusive usage of the unique ‘chicken’ signals. In contrast, the eastern B. otai population uses both ‘chicken’ and ‘cricket’ trills, and has a stronger preference for the latter. The weak reproductive character displacement in the eastern population has led to asymmetry genetic introgression from B. choui toward B. otai. Our results support the prediction that a more specialized signal-user, compared to its sibling, generalized signal-user, might have a higher probability of maintaining their genetic integrity in the secondary contact region.

2019 ◽  
Author(s):  
İsmail K. Sağlam ◽  
Michael R. Miller ◽  
Sean O’Rourke ◽  
Selim S. Çağlar

AbstractWhen incipient species meet in secondary contact, natural selection can rapidly reduce costly reproductive interactions by directly targeting reproductive traits. This process, called reproductive character displacement (RCD), leaves a characteristic pattern of geographic variation where divergence of traits between species is greater in sympatry than allopatry. However, because other forces can also cause similar patterns, care must be given in separating pattern from process. Here we show how the phylo-comparative method together with genomic data can be used to evaluate evolutionary processes at the population level in closely related species. Using this framework, we test the role of RCD in speciation of two cricket species endemic to Anatolian mountains by quantifying patterns of character displacement, rates of evolution and adaptive divergence. Our results show differing patterns of character displacement between species for reproductive vs. non-reproductive characters and strong patterns of asymmetric divergence. We demonstrate diversification results from rapid divergence of reproductive traits towards multiple optima under the dual influence of strong drift and selection. These results present the first solid evidence for RCD in Anatolian mountains, quantify the amount of drift and selection necessary for RCD to lead to speciation, and demonstrate the utility of phylo-comparative methods for quantifying evolutionary parameters at the population level.


2018 ◽  
Vol 27 (18) ◽  
pp. 3655-3670 ◽  
Author(s):  
Kelly A. Dyer ◽  
Emily R. Bewick ◽  
Brooke E. White ◽  
Michael J. Bray ◽  
Devon P. Humphreys

2014 ◽  
Vol 281 (1789) ◽  
pp. 20140949 ◽  
Author(s):  
Karin S. Pfennig ◽  
Amber M. Rice

Reproductive character displacement is the adaptive evolution of traits that minimize deleterious reproductive interactions between species. When arising from selection to avoid hybridization, this process is referred to as reinforcement. Reproductive character displacement generates divergence not only between interacting species, but also between conspecific populations that are sympatric with heterospecifics versus those that are allopatric. Consequently, such conspecific populations can become reproductively isolated. We compared female mate preferences in, and evaluated gene flow between, neighbouring populations of spadefoot toads that did and did not occur with heterospecifics (mixed- and pure-species populations, respectively). We found that in mixed-species populations females significantly preferred conspecifics. Such females also tended to prefer a conspecific call character that was dissimilar from heterospecifics. By contrast, females from pure-species populations did not discriminate conspecific from heterospecific calls. They also preferred a more exaggerated conspecific call character that resembles heterospecific males. Moreover, gene flow was significantly reduced between mixed- and pure-species population types. Thus, character displacement (and, more specifically, reinforcement) may initiate reproductive isolation between conspecific populations that differ in interactions with heterospecifics.


2020 ◽  
pp. 447-471
Author(s):  
Matthias Galipaud ◽  
Loïc Bollache ◽  
Clément Lagrue

Recent advances in molecular and genetic techniques have revealed tremendous hidden genetic diversity in plants and animals. Crustaceans are no exception and, in fact, present one of the highest levels of cryptic diversity among the metazoans. Beyond the importance of such discovery and its multiple implications for taxonomy and ecology, it is now timely to investigate the potential causes of cryptic diversity. This chapter reviews the theoretical and experimental literature, seeking evidences for a relationship between sexual selection and cryptic diversity in crustaceans. It proposes three scenarios for the role of sexual selection on the origin and maintenance of pre-mating isolation and genetic divergence among crustacean populations, and suggests ways to discriminate among them experimentally or using existing data. Assuming that taxonomic identification is largely based on differences in sexually selected morphological traits, it also reviews evidence for a cryptic action of sexual selection on crustacean phenotypes. Specifically, if sexual selection acts primarily on chemical, visual, or behavioral traits, it is likely that allopatric crustacean populations remain morphologically similar even when they are reproductively isolated. This review shows that the strength of sexual selection likely differs among allopatric populations but does not seem to consistently induce pre-mating isolation (e.g. as in copepods and amphipods). Research is now needed to try to identify general patterns and determine the role of sexual selection on pre-mating isolation after secondary contact between populations, through reinforcement and reproductive character displacement.


Sign in / Sign up

Export Citation Format

Share Document