scholarly journals HrpS Is a Global Regulator on Type III Secretion System (T3SS) and Non-T3SS Genes in Pseudomonas savastanoi pv. phaseolicola

2018 ◽  
Vol 31 (12) ◽  
pp. 1232-1243 ◽  
Author(s):  
Jingru Wang ◽  
Xiaolong Shao ◽  
Yingchao Zhang ◽  
Yanan Zhu ◽  
Pan Yang ◽  
...  

The type III secretion system (T3SS) is the main machinery for Pseudomonas savastanoi and other gram-negative bacteria to invade plant cells. HrpR and HrpS form a hetero-hexamer, which activates the expression of HrpL, which induces all T3SS genes by binding to a ‘hrp box’ in promoters. However, the individual molecular mechanism of HrpR or HrpS has not been fully understood. Through chromatin immunoprecipitation coupled to high-throughput DNA sequencing, we found that HrpR, HrpS, and HrpL had four, 47, and 31 targets on the genome, respectively. HrpS directly bound to the promoter regions of a group of T3SS genes and non-T3SS genes. HrpS independently regulated these genes in a hrpL deletion strain. Additionally, a HrpS-binding motif (GTGCCAAA) was identified, which was verified by electrophoretic mobility shift assay and lux-reporter assay. HrpS also regulated motility and biofilm formation in P. savastanoi. The present study strongly suggests that HrpS alone can work as a global regulator on both T3SS and non-T3SS genes in P. savastanoi. [Formula: see text] Copyright © 2018 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .

2022 ◽  
Vol 18 (1) ◽  
pp. e1010170
Author(s):  
Dan Wang ◽  
Xinxin Zhang ◽  
Liwen Yin ◽  
Qi Liu ◽  
Zhaoli Yu ◽  
...  

Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5’ untranslated region (5’ UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5’ UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa.


2015 ◽  
Vol 84 (2) ◽  
pp. 537-549 ◽  
Author(s):  
Takeshi Shimizu ◽  
Kimitoshi Ichimura ◽  
Masatoshi Noda

Although the adhesion of enterohemorrhagicEscherichia coli(EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces byE. colihas been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to thelrhApromoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection.


2006 ◽  
Vol 31 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Hua Zhu ◽  
Tim C.R. Conibear ◽  
Rani Bandara ◽  
Yulina Aliwarga ◽  
Fiona Stapleton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document