scholarly journals The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae

2016 ◽  
Vol 29 (3) ◽  
pp. 220-230 ◽  
Author(s):  
Xing-Yu Wang ◽  
Lian Zhou ◽  
Jun Yang ◽  
Guang-Hai Ji ◽  
Ya-Wen He

Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, produces diffusible signal factor (DSF) family quorum sensing signals to regulate virulence. The biosynthesis and perception of DSF family signals require components of the rpf (regulation of pathogenicity factors) cluster. In this study, we report that RpfB plays an essential role in DSF family signal turnover in X. oryzae pv. oryzae PXO99A. The production of DSF family signals was boosted by deletion of the rpfB gene and was abolished by its overexpression. The RpfC/RpfG-mediated DSF signaling system negatively regulates rpfB expression via the global transcription regulator Clp, whose activity is reversible in the presence of cyclic diguanylate monophosphate. These findings indicate that the DSF family signal turnover system in PXO99A is generally consistent with that in Xanthomonas campestris pv. campestris. Moreover, this study has revealed several specific roles of RpfB in PXO99A. First, the rpfB deletion mutant produced high levels of DSF family signals but reduced extracellular polysaccharide production, extracellular amylase activity, and attenuated pathogenicity. Second, the rpfB/rpfC double-deletion mutant was partially deficient in xanthomonadin production. Taken together, the RpfB-dependent DSF family signal turnover system is a conserved and naturally presenting signal turnover system in Xanthomonas spp., which plays unique roles in X. oryzae pv. oryzae adaptation and pathogenesis.

2020 ◽  
Vol 11 ◽  
Author(s):  
Sara C. D. Carpenter ◽  
Prashant Mishra ◽  
Chandrika Ghoshal ◽  
Prasanta K. Dash ◽  
Li Wang ◽  
...  

2006 ◽  
Vol 52 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Palaniyandi Velusamy ◽  
J Ebenezar Immanuel ◽  
Samuel S Gnanamanickam ◽  
Linda Thomashow

Certain plant-associated strains of fluorescent Pseudomonas spp. are known to produce the antimicrobial antibiotic 2,4-diacetylphloroglucinol (DAPG). It has antibacterial, antifungal, antiviral, and antihelminthic properties and has played a significant role in the biological control of tobacco, wheat, and sugar beet diseases. It has never been reported from India and has not been implicated in the biological suppression of a major disease of the rice crop. Here, we report that a subpopulation of 27 strains of plant-associated Pseudomonas fluorescens screened in a batch of 278 strains of fluorescent pseudomonads produced DAPG. The DAPG production was detected by a PCR-based screening method that used primers Phl2a and Phl2b and amplified a 745-bp fragment characteristic of DAPG. HPLC,1H NMR, and IR analyses provided further evidence for its production. We report also that this compound inhibited the growth of the devastating rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae in laboratory assays and suppressed rice bacterial blight up to 59%–64% in net-house and field experiments. Tn5 mutants defective in DAPG production (Phl–) of P. fluorescens PTB 9 were much less effective in their suppression of rice bacterial blight.Key words: biocontrol, 2,4-diacetylphloroglucinol, Pseudomonas fluorescens, rice, Xanthomonas oryzae pv. oryzae.


2012 ◽  
Vol 102 (3) ◽  
pp. 252-259 ◽  
Author(s):  
Yancun Zhao ◽  
Guoliang Qian ◽  
Jiaqin Fan ◽  
Fangqun Yin ◽  
Yijin Zhou ◽  
...  

Virulence factors of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, are regulated by a diffusible signal factor (DSF)-dependent quorum-sensing (QS) system. In this study, a novel pathogenicity-related gene, Xoryp_010100018570 (named hshB), of X. oryzae pv. oryzicola was characterized. hshB encodes a hydrolase with a putative signal peptide, which is a homolog of imidazolonepropionase. Bioinformatic analysis showed that hshB is relatively conserved in the genus Xanthomonas but the homologous gene of hshB was not found in X. oryzae pv. oryzae. Reverse-transcription polymerase chain reaction (PCR) analysis showed that hshB and its upstream gene, Xoryp_010100018565 (named hshA), are co-transcribed in X. oryzae pv. oryzicola. Subsequent experimental results indicated that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production, growth in minimal medium, and resistance to oxidative stress and bismerthiazol of X. oryzae pv. oryzicola. Mutation of clp, encoding a global regulator, resulted in similar phenotypes. Real-time PCR assays showed that hshB transcription is positively regulated by clp and DSF, and induced by poor nutrition. Our study not only found a novel gene hshB regulated by DSF-dependent QS system and clp but also showed that hshB was required for virulence of X. oryzae pv. oryzicola.


2018 ◽  
Author(s):  
Sara C. D. Carpenter ◽  
Prashant Mishra ◽  
Chandrika Ghoshal ◽  
Prasanta Dash ◽  
Li Wang ◽  
...  

AbstractThe rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) injects transcription activator-like effectors (TALEs) that bind and activate host ‘susceptibility’ (S) genes important for disease. Clade III SWEET genes are major S genes for bacterial blight. The resistance genes xa5, which reduces TALE activity generally, and xa13, a SWEET11 allele not recognized by the cognate TALE, have been effectively deployed. However, strains that defeat both resistance genes individually were recently reported in India and Thailand. To gain insight into the mechanism(s), we completely sequenced the genome of one such strain from each country and examined the encoded TALEs. Strikingly, the two strains are clones, sharing nearly identical TALE repertoires, including a TALE known to activate SWEET11 strongly enough to be effective even when diminished by xa5. We next investigated SWEET gene induction by the Indian strain. The Indian strain induced no clade III SWEET in plants harbouring xa13, indicating a pathogen adaptation that relieves dependence on these genes for susceptibility. The findings open a door to mechanistic understanding of the role SWEET genes play in susceptibility and illustrate the importance of complete genome sequence-based monitoring of Xoo populations in developing varieties with effective disease resistance.


Microbiology ◽  
2009 ◽  
Vol 155 (9) ◽  
pp. 3033-3044 ◽  
Author(s):  
Jia-Xun Feng ◽  
Zhi-Zhong Song ◽  
Cheng-Jie Duan ◽  
Shuai Zhao ◽  
Ying-Qiao Wu ◽  
...  

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice, one of the most serious rice diseases. The xrvA gene from Xoo strain 13751 encodes a protein containing a histone-like nucleoid-structuring protein (H-NS) domain. The expression of xrvA in strain 13751 was enhanced in XOM2 minimal medium. Mutation of the xrvA gene of strain 13751 led to a significant reduction in virulence in the host plant rice, a delayed hypersensitive response in the nonhost castor-oil plant, a decrease in extracellular polysaccharide and diffusible signal factor production, and an increase in intracellular glycogen accumulation. Northern hybridization analyses revealed that the virulence-associated genes hrpG, hrpX, rpfC, rpfF, rpfG and gumB were downregulated in the xrvA mutant compared to the wild-type and complemented strains. Interestingly, increase of copy number of xrvA in the wild-type strain 13751 resulted in a strain showing similar phenotypes as the xrvA mutant and a reduction of the expression of gumB, hrpX, rpfC, rpfF and rpfG. These findings indicate that the xrvA gene, which is highly conserved in the sequenced strains of Xanthomonas, encodes an important regulatory factor for the virulence of Xoo.


2012 ◽  
Vol 25 (6) ◽  
pp. 789-801 ◽  
Author(s):  
Rikky Rai ◽  
Manish Ranjan ◽  
Binod B. Pradhan ◽  
Subhadeep Chatterjee

In Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, a secreted fatty acid signaling molecule known as diffusible signal factor (DSF) is required for virulence and growth on low-iron medium. To identify other virulence-associated traits that are regulated by DSF in this pathogen, we have performed microarray analysis of transcriptional changes between the wild type and DSF-deficient mutants of X. oryzae pv. oryzae. Expression of genes that encode secreted hydrolytic enzymes, motility, and chemotaxis functions are negatively regulated by DSF while functions involved in adhesion and biofilm formation are positively regulated. Enzymatic assays for hydrolytic enzymes as well as assays for chemotaxis, motility, attachment, and biofilm formation corroborate these findings. These results demonstrate that, in X. oryzae pv. oryzae, DSF-mediated cell-to-cell signaling coordinates transition from solitary to biofilm lifestyle by promoting expression of attachment functions and negatively regulating expression of motility functions. This is in contrast to X. campestris pv. campestris, a pathogen of crucifers, wherein the DSF system positively regulates motility functions and negatively regulates biofilm formation. These results indicate that virulence-associated functions can be regulated in a completely contrasting fashion by the same signaling system in very closely related bacteria.


Author(s):  
Arra Yugander ◽  
Md Ershad ◽  
Pitchiah P. Muthuraman ◽  
Vellaisamy Prakasam ◽  
Duraisamy Ladhalakshmi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document