scholarly journals Quorum Sensing and Indole-3-Acetic Acid Degradation Play a Role in Colonization and Plant Growth Promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN

2013 ◽  
Vol 26 (5) ◽  
pp. 546-553 ◽  
Author(s):  
Ana Zúñiga ◽  
María Josefina Poupin ◽  
Raúl Donoso ◽  
Thomas Ledger ◽  
Nicolás Guiliani ◽  
...  

Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant–bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.

1996 ◽  
Vol 42 (3) ◽  
pp. 279-283 ◽  
Author(s):  
T. C. Noel ◽  
C. Sheng ◽  
C. K. Yost ◽  
R. P. Pharis ◽  
M. F. Hynes

Early seedling root growth of the nonlegumes canola (Brassica campestris cv. Tobin, Brassica napus cv. Westar) and lettuce (Lactuca saliva cv. Grand Rapids) was significantly promoted by inoculation of seeds with certain strains of Rhizobium leguminosarum, including nitrogen- and nonnitrogen-fixing derivatives under gnotobiotic conditions. The growfh-promotive effect appears to be direct, with possible involvement of the plant growth regulators indole-3-acetic acid and cytokinin. Auxotrophic Rhizobium mutants requiring tryptophan or adenosine (precursors for indole-3-acetic acid and cytokinin synthesis, respectively) did not promote growth to the extent of the parent strain. The findings of this study demonstrate a new facet of the Rhizobium–plant relationship and that Rhizobium leguminosarum can be considered a plant growth-promoting rhizobacterium (PGPR).Key words: Rhizobium, plant growth-promoting rhizobacteria, PGPR, indole-3-acetic acid, cytokinin, roots, auxotrophic mutants.


2021 ◽  
Vol 49 (2) ◽  
pp. 12294
Author(s):  
Maria T. SALAZAR-RAMÍREZ ◽  
Jorge SÁENZ-MATA ◽  
Pablo PRECIADO-RANGEL ◽  
Manuel FORTIS-HERNÁNDEZ ◽  
Edgar O. RUEDA-PUENTE ◽  
...  

In the communities of Sierra Mojada and Viesca, Coahuila, Mexico of Coahuila desert, two rhizosphere samplings of candelilla (Euphorbia antisyphilitica Zucc) were collected to isolate, characterize, and identifying plant growth-promoting rhizobacteria (PGPR); 165 rhizobacteria were tested in vitro with Arabidopsis thaliana seedlings to evaluate their potential as plant growth promoters, and obtaining 21 strains with best results in the variables of the number of secondary roots and fresh weight concerning the uninoculated control. Their salinity tolerance was evaluated at concentrations from 0.85 M, 1.7 M and 2.55 M of NaCl. Biochemical tests were accomplishing such as siderophores production, phosphates solubilization, production of Indole-3-acetic acid (IAA), and the activity of the ACC deaminase enzyme. The results obtained from 21 strains selected, high activities were obtained in organic substances like a siderophores since they developed a translucent orange halo around their growth; four rhizobacteria developed a clear halo around the bacterial growth with a thickness between 1.487 mm ± 0.667 mm and 5.267 mm ± 0.704 mm in phosphates solubilization; in the production of Indole-3-acetic acid (IAA), the bacterial strains showed the presence of this phytohormone, with values ​​from 4.444 μg mL-1 to 19.286 μg mL-1; and according to the activity of the ACC deaminase enzyme, values ​​from 0.424 to 1.306 µmol α-KB/h/mg Pr were showed. 16S rRNA sequencing was carried out and genus identified were Bacillus, Staphylococcus, Acinetobacter, Cronobacter and Siccibacter. The results obtained show the potential of the isolated rhizobacteria as growth promoters and the increase in the biomass of the Arabidopsis thaliana seedlings is evident. This is a first indication to proceed to carry out tests in different phenological stages in crops of agricultural importance.


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Raúl Donoso ◽  
Pablo Leiva-Novoa ◽  
Ana Zúñiga ◽  
Tania Timmermann ◽  
Gonzalo Recabarren-Gajardo ◽  
...  

ABSTRACT Several bacteria use the plant hormone indole-3-acetic acid (IAA) as a sole carbon and energy source. A cluster of genes (named iac) encoding IAA degradation has been reported in Pseudomonas putida 1290, but the functions of these genes are not completely understood. The plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN harbors iac gene homologues in its genome, but with a different gene organization and context than those of P. putida 1290. The iac gene functions enable P. phytofirmans to use IAA as a sole carbon and energy source. Employing a heterologous expression system approach, P. phytofirmans iac genes with previously undescribed functions were associated with specific biochemical steps. In addition, two uncharacterized genes, previously unreported in P. putida and found to be related to major facilitator and tautomerase superfamilies, are involved in removal of an IAA metabolite called dioxindole-3-acetate. Similar to the case in strain 1290, IAA degradation proceeds through catechol as intermediate, which is subsequently degraded by ortho-ring cleavage. A putative two-component regulatory system and a LysR-type regulator, which apparently respond to IAA and dioxindole-3-acetate, respectively, are involved in iac gene regulation in P. phytofirmans. These results provide new insights about unknown gene functions and complex regulatory mechanisms in IAA bacterial catabolism. IMPORTANCE This study describes indole-3-acetic acid (auxin phytohormone) degradation in the well-known betaproteobacterium P. phytofirmans PsJN and comprises a complete description of genes, some of them with previously unreported functions, and the general basis of their gene regulation. This work contributes to the understanding of how beneficial bacteria interact with plants, helping them to grow and/or to resist environmental stresses, through a complex set of molecular signals, in this case through degradation of a highly relevant plant hormone.


Author(s):  
Di Fan ◽  
Donald L. Smith

There are pressing needs to reduce the use of agrochemicals, and PGPR are receiving increasing interest in plant growth promotion and disease protection. This study follows up our previous report that the four newly isolated rhizobacteria promote the growth of Arabidopsis thaliana .


2019 ◽  
Vol 85 (19) ◽  
Author(s):  
Evan Mayer ◽  
Patricia Dörr de Quadros ◽  
Roberta Fulthorpe

ABSTRACT A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavus. IMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.


2013 ◽  
Vol 807-809 ◽  
pp. 2023-2026
Author(s):  
Yu Xiu Zhang ◽  
Pei Li Shi ◽  
Qian Zhang

The cadmium-resistant Pseudomonas aeruginosa strain ZGKD2 was isolated from gangue pile of coal area. Production of siderophores, indole-3-acetic acid (IAA) and the solubilization of phosphate were observed in the strain. Two types of siderophores were identified by UV spectrophotometer. The highest production of IAA and phosphate solubilization were 2.0 ug/mL and 7.2 ug/mL. The root length, plant height and fresh weight of Amorpha fruticosa L in the substrates of Coal gannue and losses were promoted after inoculation with ZGKD2. These data indicated that Pseudomonas aeruginosa strain ZGKD2 was a plant growth-promoting bacterial (PGPB).


2018 ◽  
Author(s):  
Xiaohui Wang ◽  
Changdong Wang ◽  
Chao Ji ◽  
Qian Li ◽  
Jiamiao Zhang ◽  
...  

AbstractBacillus amyloliquefaciens subsp. plantarum XH-9 is a plant-beneficial rhizobacterium that shows good antagonistic potential against phytopathogens by releasing diffusible and volatile antibiotics, and secreting hydrolytic enzymes. Furthermore, the XH-9 strain possesses important plant growth-promoting characteristics, including nitrogen fixation (7.92 ± 1.05 mg/g), phosphate solubilization (58.67 ± 4.20 μg/L), potassium solubilization (10.07 ± 1.26 μg/mL), and the presence of siderophores (4.92 ± 0.46 μg/mL), indole-3-acetic acid (IAA) (7.76 ± 0.51 μg/mL) and 1-aminocyclopropane-1-carboxylic acid deaminase (ACC-deaminase) (4.67 ± 1.21 nmol/[mg•h]). Moreover, the XH-9 strain showed good capacities for wheat, corn, and chili root colonization, which are critical prerequisites for controlling soil-borne diseases as a bio-control agent. Real-time quantitative polymerase chain reaction experiments showed that the amount of Fusarium oxysporum DNA associated with the XH-9 strain after treatment significantly decreased compared with control group. Accordingly, wheat plants inoculated with the XH-9 strain showed significant increases in the plant shoot heights (14.20%), root lengths (32.25%), dry biomass levels (11.93%), and fresh biomass levels (16.28%) relative to the un-inoculated plants. The results obtained in this study suggest that the XH-9 strain has potential as plant-growth promoter and biocontrol agent when applied in local arable land to prevent damage caused by F. oxysporum and other phytopathogens.ImportancePlant diseases, particularly soilborne pathogens, play a significant role in the destruction of agricultural resources. Although these diseases can be controlled to some extent with crop and fungicides, while these measures increase the cost of production, promote resistance, and lead to environmental contamination, so they are being phased out. Plant growth-promoting rhizobacteria are an alternative to chemical pesticides that can play a key role in crop production by means of siderophore and indole-3-acetic acid production, antagonism to soilborne root pathogens, phosphate and potassium solubilization, and nitrogen fixation. These rhizobacteria can also promote a beneficial change in the microorganism community by significantly reducing its pathogenic fungi component. Their use is fully in accord with the principles of sustainability.


Author(s):  
Ihsan Ullah

Cadmium (Cd) is a heavy metal that suppresses plant growth; however, application of endophytic bacteria can increase resistance of plants against Cd, as well as improve plant growth. Two bacterial endophytic strains were isolated from Solanum nigrum and were identified as Serratia sp. AI001 and Enterobacter sp. AI002 by 16S DNA sequencing. Strains AI001 and AI002, tolerated up to 25 mg/mL Cd in broth culture and showed phosphate solubilization potential in Pikovskaya agar medium. AI001 and AI002 produced indole-3-acetic acid, which was confirmed by gas spectrometry-mass chromatography. Brassica plants stressed with 0, 5, 15, and 25 mg/L Cd showed significant decrease in plant growth, chlorophyll content and biomass, and significant increase in Cd dose-dependent electrolyte leakage. Inoculation of strain AI001 or AI002 significantly enhanced the plant growth attributes of shoot length, root length, chlorophyll content, and biomass as compared to those in uninoculated plants. Reduced glutathione contents in plants stressed with different concentrations of Cd also increased with inoculation of AI001 and AI002. The reason of Cd resistance enhancement in plants by inocula could be due to their greater plant growth promoting activities as well as their antioxidative response.


Sign in / Sign up

Export Citation Format

Share Document