scholarly journals Genome Sequence Resource for Elsinoë ampelina, the Causal Organism of Grapevine Anthracnose

2020 ◽  
Vol 33 (4) ◽  
pp. 576-579 ◽  
Author(s):  
Zhi Li ◽  
Yanchun Fan ◽  
Pingping Chang ◽  
Linlin Gao ◽  
Xiping Wang

Elsinoë ampelina is an ascomycetous fungus that causes grape anthracnose, a potentially devastating disease worldwide. Here, we report a 28.29 Mb high-quality genome sequence of E. ampelina YL-1 that encodes 8,057 predicted protein-coding genes and represents the first sequenced genome assembly of E. ampelina. This study adds to the current genomic resources for the genus Elsinoë and paves the way for research on comparative genomic studies, E. ampelina–grape interactions, and improvement of management strategies.

2019 ◽  
Vol 9 (10) ◽  
pp. 3057-3066 ◽  
Author(s):  
Eoin O’Connor ◽  
Jamie McGowan ◽  
Charley G. P. McCarthy ◽  
Aniça Amini ◽  
Helen Grogan ◽  
...  

Agaricus bisporus is an extensively cultivated edible mushroom. Demand for cultivation is continuously growing and difficulties associated with breeding programs now means strains are effectively considered monoculture. While commercial growing practices are highly efficient and tightly controlled, the over-use of a single strain has led to a variety of disease outbreaks from a range of pathogens including bacteria, fungi and viruses. To address this, the Agaricus Resource Program (ARP) was set up to collect wild isolates from diverse geographical locations through a bounty-driven scheme to create a repository of wild Agaricus germplasm. One of the strains collected, Agaricus bisporus var. bisporus ARP23, has been crossed extensively with white commercial varieties leading to the generation of a novel hybrid with a dark brown pileus commonly referred to as ‘Heirloom’. Heirloom has been successfully implemented into commercial mushroom cultivation. In this study the whole genome of Agaricus bisporus var. bisporus ARP23 was sequenced and assembled with Illumina and PacBio sequencing technology. The final genome was found to be 33.49 Mb in length and have significant levels of synteny to other sequenced Agaricus bisporus strains. Overall, 13,030 putative protein coding genes were located and annotated. Relative to the other A. bisporus genomes that are currently available, Agaricus bisporus var. bisporus ARP23 is the largest A. bisporus strain in terms of gene number and genetic content sequenced to date. Comparative genomic analysis shows that the A. bisporus mating loci in unifactorial and unsurprisingly highly conserved between strains. The lignocellulolytic gene content of all A. bisporus strains compared is also very similar. Our results show that the pangenome structure of A. bisporus is quite diverse with between 60–70% of the total protein coding genes per strain considered as being orthologous and syntenically conserved. These analyses and the genome sequence described herein are the starting point for more detailed molecular analyses into the growth and phenotypical responses of Agaricus bisporus var. bisporus ARP23 when challenged with economically important mycoviruses.


2017 ◽  
Vol 5 (43) ◽  
Author(s):  
Enrico Büttner ◽  
Anna Maria Gebauer ◽  
Martin Hofrichter ◽  
Christiane Liers ◽  
Harald Kellner

ABSTRACT We report here the draft genome of Kretzschmaria (Ustulina) deusta, an ascomycetous fungus that colonizes and substantially degrades hardwood and can infest living broad-leaved trees. The genome was assembled into 858 contigs, with a total size of 46.5 Mb, and 11,074 protein-coding genes were predicted.


2019 ◽  
Vol 8 (34) ◽  
Author(s):  
Anthony Wong ◽  
Ana Carolina M. Junqueira ◽  
Ankur Chaturvedi ◽  
Akira Uchida ◽  
Rikky W. Purbojati ◽  
...  

Pseudomonas sp. strain SGAir0191 was isolated from an air sample collected in Singapore, and its genome was sequenced using a combination of long and short reads to generate a high-quality genome assembly. The complete genome is approximately 5.07 Mb with 4,370 protein-coding genes, 19 rRNAs, and 73 tRNAs.


2020 ◽  
Vol 110 (4) ◽  
pp. 723-725
Author(s):  
Demetra N. Skaltsas ◽  
Catalina Salgado-Salazar

Thelonectria rubi is the causal agent of Nectria canker of Rubus spp. Here, we report a high-quality draft genome sequence for this pathogen, which also represents the first genome sequence for a Thelonectria species. The genome assembly was 44.6 Mb in size, assembled into 669 scaffolds and consisting of 12,973 predicted protein-coding genes. The availability of genome data for T. rubi provides a critical additional resource for an important plant pathogen and will be useful for fungal biology, comparative genomic, taxonomic and population studies of this and related species.


2019 ◽  
Vol 8 (37) ◽  
Author(s):  
Gareth T. Little ◽  
Muhammad Ehsaan ◽  
Christian Arenas-López ◽  
Kamran Jawed ◽  
Klaus Winzer ◽  
...  

The hydrogen-utilizing strain Cupriavidus necator H16 (DSM 428) was sequenced using a combination of PacBio and Illumina sequencing. Annotation of this strain reveals 6,543 protein-coding genes, 263 pseudogenes, 64 tRNA genes, and 15 rRNA genes.


2013 ◽  
Vol 103 (5) ◽  
pp. 479-487 ◽  
Author(s):  
Efrén Remesal ◽  
Blanca B. Landa ◽  
María del Mar Jiménez-Gasco ◽  
Juan A. Navas-Cortés

Populations of Sclerotium rolfsii, the causal organism of Sclerotium root-rot on a wide range of hosts, can be placed into mycelial compatibility groups (MCGs). In this study, we evaluated three different molecular approaches to unequivocally identify each of 12 previously identified MCGs. These included restriction fragment length polymorphism (RFLP) patterns of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) and sequence analysis of two protein-coding genes: translation elongation factor 1α (EF1α) and RNA polymerase II subunit two (RPB2). A collection of 238 single-sclerotial isolates representing 12 MCGs of S. rolfsii were obtained from diseased sugar beet plants from Chile, Italy, Portugal, and Spain. ITS-RFLP analysis using four restriction enzymes (AluI, HpaII, RsaI, and MboI) displayed a low degree of variability among MCGs. Only three different restriction profiles were identified among S. rolfsii isolates, with no correlation to MCG or to geographic origin. Based on nucleotide polymorphisms, the RPB2 gene was more variable among MCGs compared with the EF1α gene. Thus, 10 of 12 MCGs could be characterized utilizing the RPB2 region only, while the EF1α region resolved 7 MCGs. However, the analysis of combined partial sequences of EF1α and RPB2 genes allowed discrimination among each of the 12 MCGs. All isolates belonging to the same MCG showed identical nucleotide sequences that differed by at least in one nucleotide from a different MCG. The consistency of our results to identify the MCG of a given S. rolfsii isolate using the combined sequences of EF1α and RPB2 genes was confirmed using blind trials. Our study demonstrates that sequence variation in the protein-coding genes EF1α and RPB2 may be exploited as a diagnostic tool for MCG typing in S. rolfsii as well as to identify previously undescribed MCGs.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Leopoldo Palma ◽  
Eleodoro E. Del Valle ◽  
Laureano Frizzo ◽  
Colin Berry ◽  
Primitivo Caballero

Here, we report the draft genome sequence of Photorhabdus luminescens strain DSPV002N, which consists of 177 contig sequences accounting for 5,518,143 bp, with a G+C content of 42.3% and 4,701 predicted protein-coding genes (CDSs). From these, 27 CDSs exhibited significant similarity with insecticidal toxin proteins from Photorhabdus luminescens subsp. laumondii TT01.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Chandandeep Kaur ◽  
Govindan Selvakumar ◽  
Arakalgud Nanjundiah Ganeshamurthy

We report the 8.9 Mb draft genome sequence of phosphate-solubilizing bacterium Paraburkholderia tropica strain P-31, isolated from pomegranate ( Punica granatum ) rhizosphere. The draft genome sequence of Paraburkholderia tropica strain P-31 consists of 8,881,246 bp with a G+C content of 64.7%, 8,039 protein-coding genes, and 49 RNAs.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Huihui Du ◽  
Rendong Fang ◽  
Tingting Pan ◽  
Tian Li ◽  
Nengzhang Li ◽  
...  

The Pasteurella multocida capsular type A isolates can cause pneumonia and bovine respiratory disease (BRD). In this study, comparative genomics analysis was carried out to identify the virulence genes in two different virulent P. multocida capsular type A isolates (high virulent PmCQ2 and low virulent PmCQ6). The draft genome sequence of PmCQ2 is 2.32 Mbp and contains 2,002 protein-coding genes, 9 insertion sequence (IS) elements, and 1 prophage region. The draft genome sequence of PmCQ6 is 2.29 Mbp and contains 1,970 protein-coding genes, 2 IS elements, and 3 prophage regions. The genome alignment analysis revealed that the genome similarity between PmCQ2 and PmCQ6 is 99% with high colinearity. To identify the candidate genes responsible for virulence, the PmCQ2 and PmCQ6 were compared together with that of the published genomes of high virulent Pm36950 and PmHN06 and avirulent Pm3480 and Pm70 (capsular type F). Five genes and two insertion sequences are identified in high virulent strains but not in low virulent or avirulent strains. These results indicated that these genes or insertion sequences might be responsible for the virulence of P. multocida, providing prospective candidates for further studies on the pathogenesis and the host-pathogen interactions of P. multocida.


Sign in / Sign up

Export Citation Format

Share Document