scholarly journals OsWRKY13 Mediates Rice Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling

2007 ◽  
Vol 20 (5) ◽  
pp. 492-499 ◽  
Author(s):  
Deyun Qiu ◽  
Jun Xiao ◽  
Xinhua Ding ◽  
Min Xiong ◽  
Meng Cai ◽  
...  

Although 109 WRKY genes have been identified in the rice genome, the functions of most are unknown. Here, we show that OsWRKY13 plays a pivotal role in rice disease resistance. Overexpression of OsWRKY13 can enhance rice resistance to bacterial blight and fungal blast, two of the most devastating diseases of rice worldwide, at both the seedling and adult stages, and shows no influence on the fertility. This overexpression was accompanied by the activation of salicylic acid (SA) synthesis-related genes and SA-responsive genes and the suppression of jasmonic acid (JA) synthesis-related genes and JA-responsive genes. OsWRKY13 bound to the promoters of its own and at least three other genes in SA- and JA-dependent signaling pathways. Its DNA-binding activity was influenced by pathogen infection. These results suggest that OsWRKY13, as an activator of the SA-dependent pathway and a suppressor of JA-dependent pathways, mediates rice resistance by directly or indirectly regulating the expression of a subset of genes acting both upstream and downstream of SA and JA. Furthermore, OsWRKY13 will provide a transgenic tool for engineering wider-spectrum and whole-growth-stage resistance rice in breeding programs.

2008 ◽  
Vol 36 (13) ◽  
pp. 4327-4336 ◽  
Author(s):  
K. Ando ◽  
S. Hirao ◽  
Y. Kabe ◽  
Y. Ogura ◽  
I. Sato ◽  
...  

Leukemia ◽  
2003 ◽  
Vol 18 (1) ◽  
pp. 103-112 ◽  
Author(s):  
K U Birkenkamp ◽  
M Geugien ◽  
H Schepers ◽  
J Westra ◽  
H H Lemmink ◽  
...  

Author(s):  
Mahesh S. Dashyal M. P. Basavarajappa ◽  
G. Manjunath D. P. Prakash ◽  
Sayeed Wajeed R. Mulla Anita Rajkumar Ghandhe

Bacterial blight in pomegranate is a major disease caused by Xanthomonas axonopodis pv. punicae, which has resulted in significant economic losses in terms of both quality and quantity. The ineffectiveness of most chemicals in controlling this disease has shifted grower attention to the quest for a new molecule and hence the use of plant growth regulators and signaling molecules is a novel approach to control the disease as well as improving quality and quantity attributes of pomegranate. Hence, the aim of present study was to determine the impact of plant hormones like ethylene, jasmonic acid and salicylic acid on bacterial blight of pomegranate. Among different hormones applied, ethrel application shown maximum disease severity (33.2%) and salicylic acid shown lowest disease severity (15.08%) under greenhouse condition.


2019 ◽  
Vol 8 (3) ◽  
pp. 252-265 ◽  
Author(s):  
Cleofas Marcial-Medina ◽  
Alejandra Ordoñez-Moreno ◽  
Christian Gonzalez-Reyes ◽  
Pedro Cortes-Reynosa ◽  
Eduardo Perez Salazar

Free fatty acids (FFAs) are an energy source, and induce activation of signal transduction pathways that mediate several biological processes. In breast cancer cells, oleic acid (OA) induces proliferation, matrix metalloproteinase-9 (MMP-9) secretion, migration and invasion. However, the signal transduction pathways that mediate migration and invasion induced by OA in breast cancer cells have not been studied in detail. We demonstrate here that FFAR1 and FFAR4 mediate migration induced by OA in MDA-MB-231 and MCF-7 breast cancer cells. Moreover, OA induces migration, invasion, AKT1 and AKT2 activation, 12-LOX secretion and an increase of NFκB-DNA binding activity in breast cancer cells. Cell migration requires FFAR1, FFAR4, EGFR, AKT and PI3K activity, whereas invasion is mediated though a PI3K/Akt-dependent pathway. Furthermore, OA promotes relocalization of paxillin to focal contacts and it requires PI3K and EGFR activity, whereas NFκB-DNA binding activity requires PI3K and AKT activity.


2019 ◽  
Vol 70 (15) ◽  
pp. 3969-3979 ◽  
Author(s):  
Zongyou Lv ◽  
Zhiying Guo ◽  
Lida Zhang ◽  
Fangyuan Zhang ◽  
Weimin Jiang ◽  
...  

Abstract Artemisinin is a sesquiterpene lactone produced by the Chinese traditional herb Artemisia annua and is used for the treatment of malaria. It is known that salicylic acid (SA) can enhance artemisinin content but the mechanism by which it does so is not known. In this study, we systematically investigated a basic leucine zipper family transcription factor, AaTGA6, involved in SA signaling to regulate artemisinin biosynthesis. We found specific in vivo and in vitro binding of the AaTGA6 protein to a ‘TGACG’ element in the AaERF1 promoter. Moreover, we demonstrated that AaNPR1 can interact with AaTGA6 and enhance its DNA-binding activity to its cognate promoter element ‘TGACG’ in the promoter of AaERF1, thus enhancing artemisinin biosynthesis. The artemisinin contents in AaTGA6-overexpressing and RNAi transgenic plants were increased by 90–120% and decreased by 20–60%, respectively, indicating that AaTGA6 plays a positive role in artemisinin biosynthesis. Importantly, heterodimerization with AaTGA3 significantly inhibits the DNA-binding activity of AaTGA6 and plays a negative role in target gene activation. In conclusion, we demonstrate that binding of AaTGA6 to the promoter of the artemisinin-regulatory gene AaERF1 is enhanced by AaNPR1 and inhibited by AaTGA3. Based on these findings, AaTGA6 has potential value in the genetic engineering of artemisinin production.


2019 ◽  
Vol 42 (9) ◽  
pp. 2645-2663 ◽  
Author(s):  
Zhenjiang Wu ◽  
Shiming Han ◽  
Hedan Zhou ◽  
Za Khai Tuang ◽  
Yizhong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document