scholarly journals Biosynthesis and Role in Virulence of the Histone Deacetylase Inhibitor Depudecin from Alternaria brassicicola

2009 ◽  
Vol 22 (10) ◽  
pp. 1258-1267 ◽  
Author(s):  
Wanessa D. Wight ◽  
Kwang-Hyung Kim ◽  
Christopher B. Lawrence ◽  
Jonathan D. Walton

Depudecin, an eleven-carbon linear polyketide made by the pathogenic fungus Alternaria brassicicola, is an inhibitor of histone deacetylase (HDAC). A chemically unrelated HDAC inhibitor, HC toxin, was earlier shown to be a major virulence factor in the interaction between Cochliobolus carbonum and its host, maize. In order to test whether depudecin is also a virulence factor for A. brassicicola, we identified the genes for depudecin biosynthesis and created depudecin-minus mutants. The depudecin gene cluster contains six genes (DEP1 to DEP6), which are predicted to encode a polyketide synthase (AbPKS9 or DEP5), a transcription factor (DEP6), two monooxygenases (DEP2 and DEP4), a transporter of the major facilitator superfamily (DEP3), and one protein of unknown function (DEP1). The involvement in depudecin production of DEP2, DEP4, DEP5, and DEP6 was demonstrated by targeted gene disruption. DEP6 is required for expression of DEP1 through DEP5 but not the immediate flanking genes, thus defining a coregulated depudecin biosynthetic cluster. The genes flanking the depudecin gene cluster but not the cluster itself are conserved in the same order in the related fungi Stagonospora nodorum and Pyrenophora tritici-repentis. Depudecin-minus mutants have a small (10%) but statistically significant reduction in virulence on cabbage (Brassica oleracea) but not on Arabidopsis. The role of depudecin in virulence is, therefore, less dramatic than that of HC toxin.

2019 ◽  
Vol 117 (2) ◽  
pp. 1174-1180 ◽  
Author(s):  
Guang Zhi Dai ◽  
Wen Bo Han ◽  
Ya Ning Mei ◽  
Kuang Xu ◽  
Rui Hua Jiao ◽  
...  

Indolizidine alkaloids such as anticancer drugs vinblastine and vincristine are exceptionally attractive due to their widespread occurrence, prominent bioactivity, complex structure, and sophisticated involvement in the chemical defense for the producing organisms. However, the versatility of the indolizidine alkaloid biosynthesis remains incompletely addressed since the knowledge about such biosynthetic machineries is only limited to several representatives. Herein, we describe the biosynthetic gene cluster (BGC) for the biosynthesis of curvulamine, a skeletally unprecedented antibacterial indolizidine alkaloid from Curvularia sp. IFB-Z10. The molecular architecture of curvulamine results from the functional collaboration of a highly reducing polyketide synthase (CuaA), a pyridoxal-5′-phosphate (PLP)-dependent aminotransferase (CuaB), an NADPH-dependent dehydrogenase (CuaC), and a FAD-dependent monooxygenase (CuaD), with its transportation and abundance regulated by a major facilitator superfamily permease (CuaE) and a Zn(II)Cys6 transcription factor (CuaF), respectively. In contrast to expectations, CuaB is bifunctional and capable of catalyzing the Claisen condensation to form a new C–C bond and the α-hydroxylation of the alanine moiety in exposure to dioxygen. Inspired and guided by the distinct function of CuaB, our genome mining effort discovers bipolamines A−I (bipolamine G is more antibacterial than curvulamine), which represent a collection of previously undescribed polyketide alkaloids from a silent BGC in Bipolaris maydis ATCC48331. The work provides insight into nature’s arsenal for the indolizidine-coined skeletal formation and adds evidence in support of the functional versatility of PLP-dependent enzymes in fungi.


2002 ◽  
Vol 1 (4) ◽  
pp. 538-547 ◽  
Author(s):  
Dipnath Baidyaroy ◽  
Gerald Brosch ◽  
Stefan Graessle ◽  
Patrick Trojer ◽  
Jonathan D. Walton

ABSTRACT HC-toxin, a cyclic peptide made by the filamentous fungus Cochliobolus carbonum, is an inhibitor of histone deacetylase (HDAC) from many organisms. It was shown earlier that the HDAC activity in crude extracts of C. carbonum is relatively insensitive to HC-toxin as well as to the chemically unrelated HDAC inhibitors trichostatin and D85, whereas the HDAC activity of Aspergillus nidulans is sensitive (G. Brosch et al., Biochemistry 40:12855-12863, 2001). Here we report that HC-toxin-resistant HDAC activity was present in other, but not all, plant-pathogenic Cochliobolus species but not in any of the saprophytic species tested. The HDAC activities of the fungi Alternaria brassicicola and Diheterospora chlamydosporia, which also make HDAC inhibitors, were resistant. The HDAC activities of all C. carbonum isolates tested, except one non-toxin-producing isolate, were resistant. In a cross between a sensitive isolate and a resistant isolate, resistance genetically cosegregated with HC-toxin production. When fractionated by anion-exchange chromatography, extracts of resistant and sensitive isolates and species had two peaks of HDAC activity, one that was fully HC-toxin resistant and a second that was larger and sensitive. The first peak was consistently smaller in extracts of sensitive fungi than in resistant fungi, but the difference appeared to be insufficiently large to explain the differential sensitivities of the crude extracts. Differences in mRNA expression levels of the four known HDAC genes of C. carbonum did not account for the observed differences in HDAC activity profiles. When mixed together, resistant extracts protected extracts of sensitive C. carbonum but did not protect other sensitive Cochlibolus species or Neurospora crassa. Production of this extrinsic protection factor was dependent on TOXE, the transcription factor that regulates the HC-toxin biosynthetic genes. The results suggest that C. carbonum has multiple mechanisms of self-protection against HC-toxin.


2014 ◽  
Vol 82 (5) ◽  
pp. 1793-1800 ◽  
Author(s):  
Xiaoguang Wang ◽  
Garry B. Coulson ◽  
Aleksandra A. Miranda-CasoLuengo ◽  
Raúl Miranda-CasoLuengo ◽  
Mary K. Hondalus ◽  
...  

ABSTRACTVirulence of the intracellular pathogenRhodococcus equidepends on a 21.3-kb pathogenicity island located on a conjugative plasmid. To date, the only nonregulatory pathogenicity island-encoded virulence factor identified is the cell envelope-associated VapA protein. Although the pathogenicity islands from porcine and equineR. equiisolates have undergone major rearrangements, thevirRoperon (virR-icgA-vapH-orf7-virS) is highly conserved in both, suggesting these genes play an important role in pathogenicity. VirR and VirS are transcriptional regulators controlling expression of pathogenicity island genes, includingvapA. Here, we show that whilevapHandorf7are dispensable for intracellular growth ofR. equi, deletion oficgA, formerly known asorf5, encoding a major facilitator superfamily transport protein, elicited an enhanced growth phenotype in macrophages and a significant reduction in macrophage viability, while extracellular growth in broth remained unaffected. Transcription ofvirS, located downstream oficgA, andvapAwas not affected by theicgAdeletion during growth in broth or in macrophages, showing that the enhanced growth phenotype caused by deletion oficgAwas not mediated through abnormal transcription of these genes. Transcription oficgAincreased 6-fold within 2 h following infection of macrophages and remained significantly higher 48 h postinfection compared to levels at the start of the infection. The major facilitator superfamily transport protein IcgA is the first factor identified inR. equithat negatively affects intracellular replication. Aside from VapA, it is only the second pathogenicity island-encoded structural protein shown to play a direct role in intracellular growth of this pathogenic actinomycete.


2002 ◽  
Vol 68 (10) ◽  
pp. 4996-5004 ◽  
Author(s):  
Keisuke Hayashi ◽  
Henk-jan Schoonbeek ◽  
Maarten A. De Waard

ABSTRACT Bcmfs1, a novel major facilitator superfamily gene from Botrytis cinerea, was cloned, and replacement and overexpression mutants were constructed to study its function. Replacement mutants showed increased sensitivity to the natural toxic compounds camptothecin and cercosporin, produced by the plant Camptotheca acuminata and the plant pathogenic fungus Cercospora kikuchii, respectively. Overexpression mutants displayed decreased sensitivity to these compounds and to structurally unrelated fungicides, such as sterol demethylation inhibitors (DMIs). A double-replacement mutant of Bcmfs1 and the ATP-binding cassette (ABC) transporter gene BcatrD was more sensitive to DMI fungicides than a single-replacement mutant of BcatrD, known to encode an important ABC transporter of DMIs. The sensitivity of the wild-type strain and mutants to DMI fungicides correlated with Bcmfs1 expression levels and with the initial accumulation of oxpoconazole by germlings of these isolates. The results indicate that Bcmfs1 is a major facilitator superfamily multidrug transporter involved in protection against natural toxins and fungicides and has a substrate specificity that overlaps with the ABC transporter BcatrD. Bcmfs1 may be involved in protection of B. cinerea against plant defense compounds during the pathogenic phase of growth on host plants and against fungitoxic antimicrobial metabolites during its saprophytic phase of growth.


2013 ◽  
Vol 288 (38) ◽  
pp. 27366-27374 ◽  
Author(s):  
Takanori Nihira ◽  
Erika Suzuki ◽  
Motomitsu Kitaoka ◽  
Mamoru Nishimoto ◽  
Ken'ichi Ohtsubo ◽  
...  

A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-d-mannosyl-N-acetyl-d-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-d-mannosyl-N-acetyl-d-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-d-mannose 1-phosphate and N-acetyl-d-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the d-mannose residue of β-1,4-d-mannosyl-N-acetyl-d-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-d-mannopyranosyl-N-acetyl-d-glucosamine:phosphate α-d-mannosyltransferase as the systematic name and β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase as the short name for BT1033.


2009 ◽  
Vol 75 (7) ◽  
pp. 2046-2056 ◽  
Author(s):  
Naomi L. Ward ◽  
Jean F. Challacombe ◽  
Peter H. Janssen ◽  
Bernard Henrissat ◽  
Pedro M. Coutinho ◽  
...  

ABSTRACT The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N2 fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 476
Author(s):  
Joachim Kloehn ◽  
Matteo Lunghi ◽  
Emmanuel Varesio ◽  
David Dubois ◽  
Dominique Soldati-Favre

Apicomplexan parasites are responsible for devastating diseases, including malaria, toxoplasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of toxoplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been characterized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- and proteome-wide datasets, we have identified an essential plasma membrane transporter of the major facilitator superfamily in T. gondii—previously termed TgApiAT6-1. Using an inducible system based on RNA degradation, TgApiAT6-1 was depleted, and the mutant parasite’s metabolome was compared to that of non-depleted parasites. The most significantly reduced metabolite in parasites depleted in TgApiAT6-1 was identified as the amino acid lysine, for which T. gondii is predicted to be auxotrophic. Using stable isotope-labeled amino acids, we confirmed that TgApiAT6-1 is required for efficient lysine uptake. Our findings highlight untargeted metabolomics as a powerful tool to identify the substrate of orphan transporters.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sushant Kumar ◽  
Arunabh Athreya ◽  
Ashutosh Gulati ◽  
Rahul Mony Nair ◽  
Ithayaraja Mahendran ◽  
...  

AbstractTransporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.


Sign in / Sign up

Export Citation Format

Share Document