hc toxin
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 6)

H-INDEX

21
(FIVE YEARS 0)

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi76-vi76
Author(s):  
Philip Tatman ◽  
Tadeusz Wroblewski ◽  
Anthony Fringuello ◽  
Sam Scherer ◽  
William Foreman ◽  
...  

Abstract BACKGROUND 28% of primary central nervous system tumors are glioma and glioblastoma. These tumors are responsible for 80% of malignant brain neoplasms and most brain tumor related deaths. Despite modern therapies, patients with grade II gliomas have an average survival of 8-15 years, while patients with grade III tumors have an average survival of 3-5 years, and patients with glioblastoma have an average survival of 12-15 months. The lack of a curative treatment for this group of tumors supports additional research and novel approaches to identify more effective therapies. METHODS In this study, we developed a high-throughput drug screen and culture system to identify epigenetic inhibitor compounds with the potential to reduce glioma and glioblastoma viability. RESULTS We screened 33 tumors: 18 glioblastoma, 8 oligodendroglioma, and 7 astrocytoma. The top three most effective compounds across the full glioma cohort were all HDAC inhibitors; in order from most effective: panobinostat (average tumor viability = 52.5% +/-14.1SD; p=2.16x10-61), LAQ824 (average tumor viability = 58.1% +/-18SD; p=1.48x10-45), and HC Toxin (average tumor viability = 64% +/-21.1SD; p= 1.16x10-33). Additionally, HDAC inhibition was also the most effective across each histopathological glioma type: astrocytoma, oligodendroglioma, and glioblastoma. UNC0631(G9a inhibitor) and JIB-04(KDM inhibitor) were the most effective compounds in the six recurrent tumors, though HDAC inhibition was still significantly effective in this group. We also evaluated drug sensitivity with respect to tumor grade, prior treatment, de novo vs progressive etiology, EGFR amplification, IDH mutation, MGMT methylation, and patient gender. CONCLUSIONS After screening a large glioma cohort against a panel of epigenetic inhibitors, we found HDAC inhibition most effectively reduced tumor viability across all histopathological types and grades. These findings require further in vivo validation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi84-vi84
Author(s):  
Tadeusz Wroblewski ◽  
Philip Tatman ◽  
Anthony Fringuello ◽  
Sam Scherer ◽  
William Foreman ◽  
...  

Abstract BACKGROUND Chordoma is a rare malignant tumor with few treatment options. While surgical resection is deemed the most effective treatment, the 5-year overall survival rate is 61% and 5-year recurrence free survival rate is approximately 50%. To date, no FDA approved pharmacotherapies exist for the treatment of chordoma, and adjuvant therapy remains highly debated. This necessitates the need for further research to provide clinicians with more options to treat this patient population. METHODS In this study, we conducted a high-throughput 139-compound epigenetic inhibitor screen against 12 chordoma patient-derived cell lines; 4 were resected at our institution and 8 were graciously donated by the Chordoma Foundation. RESULTS 8 tumors were located in the sacrum, 3 were located in the mobile spine, and 1 tumor was located in the clivus. 5 tumors were primary, 5 were recurrent, and 2 were metastatic. 6 tumors came from female patients and 6 tumors came from male patients. The top three most effect compounds across the cohort were the G9a inhibitor UNC0631 (cell viability = 64.5% +/-25.1SD; p=1.53x10-9), the KDM inhibitor JIB-04 (cell viability = 68.4% +/-27.2SD; p=9.81x10-8), and the G9a inhibitor BIX01294 (cell viability = 68.6% +/-27.9SD; p=1.27x10-7). No single compound significantly reduced viability in every tumor in the cohort, although the HDAC inhibitor HC Toxin significantly reduced viability in 9 tumors (cell viability = 69.7% +/-16.6SD; p=2.6x10-12). The most effective compound for sacral tumors was UNC0631 (viability = 68.6% +/-22.1SD; p=4x10-7), UNC0631 was also the most effective for spinal tumors (viability = 54.4% +/-32.1SD; p=2.72x10-3), and notably, no significant compounds were identified for the single clival tumor. CONCLUSIONS Based on our drug screen results, epigenetic inhibition, particularly methyltransferase inhibition, may be a promising therapeutic avenue for the treatment of chordomas.


2021 ◽  
Vol 10 (14) ◽  
pp. 3150
Author(s):  
Philip D. Tatman ◽  
Tadeusz H. Wroblewski ◽  
Anthony R. Fringuello ◽  
Samuel R. Scherer ◽  
William B. Foreman ◽  
...  

Background: Meningiomas are the most common primary central nervous system tumors. 20–30% of these tumors are considered high-grade and associated with poor prognosis and high recurrence rates. Despite the high occurrence of meningiomas, there are no FDA-approved compounds for the treatment of these tumors. Methods: In this study, we screened patient-cultured meningiomas with an epigenetic compound library to identify targetable mechanisms for the potential treatment of these tumors. Meningioma cell cultures were generated directly from surgically resected patient tumors and were cultured on a neural matrix. Cells were treated with a library of compounds meant to target epigenetic functions. Results: Although each tumor displayed a unique compound sensitivity profile, Panobinostat, LAQ824, and HC toxin were broadly effective across most tumors. These three compounds are broad-spectrum Histone Deacetylase (HDAC) inhibitors which target class I, IIa, and IIb HDACs. Panobinostat was identified as the most broadly effective compound, capable of significantly decreasing the average cell viability of the sample cohort, regardless of tumor grade, recurrence, radiation, and patient gender. Conclusions: These findings strongly suggest an important role of HDACs in meningioma biology and as a targetable mechanism. Additional validation studies are necessary to confirm these promising findings, as well to identify an ideal HDAC inhibitor candidate to develop for clinical use.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248772
Author(s):  
Mieczysława Irena Boguś ◽  
Anna Katarzyna Wrońska ◽  
Agata Kaczmarek ◽  
Martyna Boguś-Sobocińska

The economic losses and threats to human and animal health caused by insects and the pathogens transmitted by them require effective and environmentally-friendly methods of controlling them. One such group of natural biocontrol agents which may be used as biopesticides is that of the entomopathogenic fungi and their toxic secondary metabolites (mycotoxins). The present in vitro work examined the insecticidal potential of 65 commercially-available mycotoxins against the insect Sf-9 cell line. Mammalian Caco-2 and THP-1 cell lines served as reference controls to select insecticidal mycotoxins harmless to mammalian cells. All tested mycotoxins significantly reduced the in vitro proliferation of the Sf-9 cells and evoked morphological changes. Ten of the mycotoxins found to strongly inhibit Sf-9 proliferation also had moderate or no effect on Caco-2 cells. The THP-1 cells were highly resistant to the tested mycotoxins: doses 103 times higher were needed to affect viability and morphology (1 μg/ml for THP-1 versus 1 ng/ml for Sf-9 and Caco-2). Nine mycotoxins significantly decreased Sf-9 cell proliferation with minor effects on mammalian cells: cyclosporins B and D, cytochalasin E, gliotoxin, HC toxin, paxilline, penitrem A, stachybotrylactam and verruculogen. These may be good candidates for future biopesticide formulations.


2020 ◽  
Author(s):  
Keyword(s):  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi68-vi69
Author(s):  
Philip Tatman ◽  
Anthony Fringuello ◽  
Teddy Wroblewski ◽  
Sam Scherer ◽  
William Foreman ◽  
...  

Abstract Meningiomas are a common central nervous system (CNS) tumor, accounting for one third of CNS neoplasms. To date, no FDA approved pharmacotherapy exists for meningiomas. In an effort to identify potential treatments for meningiomas we created a culture system that allows us to grow and screen tumors across hundreds of compounds within two weeks of resection. We screened 32 meningiomas, six of which were World Health Organization (WHO) grade II, against the National Cancer Institute’s (NCI) FDA-approved cancer compound library and Caymen Chemical’s epigenetic inhibitor library, totaling to more than 300 compounds. The NCI library was screened at 1um, and the Caymen library was screened at 5um. Each library was screened in triplicate, allowing us to calculate statistical significance. We used an MTS assay to determine cell viability after three days. The data was background subtracted and normalized to controls. Significant changes in cell viability were determined for individual drugs using a Mann-Whitney-U test compared to untreated controls. On average, regardless of grade, 5.9 compounds per hundred screened significantly reduced tumor viability. We identified four compounds in the NCI FDA-approved library that reduced cell viability, on average across all tumors screened, by at least 50%: romidepsin, panobinostat, daunorubicin, and carfilzomib. Using the same criteria, we identified the following drugs from the Caymen epigenetic library: LAQ824, panobinostat, and HC toxin. Of the six compounds implicated as possible treatments for meningiomas, four are histone deacetylase (HDAC) inhibitors. HDAC inhibitors may represent a promising target for the treatment of meningiomas. Based on this data, we have begun in vivo work using PDX mouse models to investigate the therapeutic potential of HDAC inhibitors for the treatment of meningiomas.


2018 ◽  
Author(s):  
Sandeep R. Marla ◽  
Kevin Chu ◽  
Satya Chintamanani ◽  
Dilbag Multani ◽  
Antje Klempien ◽  
...  

ABSTRACTAdult plant resistance (APR) is an enigmatic phenomenon in which resistance genes are ineffective in protecting seedlings from disease but confer robust resistance at maturity. Maize has multiple cases in which genes confer APR to northern leaf spot, a lethal disease caused byCochliobolus carbonumrace 1 (CCR1). The first identified case of APR in maize is encoded by a hypomorphic allele,Hm1A, at thehm1locus. In contrast, wild type alleles ofhm1provide complete protection at all developmental stages and in every part of the maize plant.Hm1encodes an NADPH-dependent reductase, which inactivates HC-toxin, a key virulence effector of CCR1. Cloning and characterization ofHm1Aruled out differential transcription or translation for its APR phenotype and identified an amino acid substitution that reduced HC-toxin reductase (HCTR) activity. The possibility of a causal relationship between the weak nature ofHm1Aand its APR phenotype was confirmed by the generation of two new APR alleles ofHm1by mutagenesis. The HCTRs encoded by these new APR alleles had undergone relatively conservative missense changes that partially reduced their enzymatic activity similar to HM1A. No difference in accumulation of HCTR was observed between adult and juvenile plants, suggesting that the susceptibility of seedlings derives from a greater need for HCTR activity, not reduced accumulation of the gene product. Conditions and treatments that altered the photosynthetic output of the host had a dramatic effect on resistance imparted by the APR alleles, demonstrating a link between the energetic or metabolic status of the host and disease resistance affected by HC-toxin catabolism by the APR alleles of HCTR.AUTHOR SUMMARYAdult plant resistance (APR) is a phenomenon in which disease resistance genes are able to confer resistance at the adult stages of the plant but somehow fail to do so at the seedling stages. Despite the widespread occurrence of APR in various plant diseases, the mechanism underlying this trait remains obscure. It is not due to the differential transcription of these genes, and here we show that it is also not due to the differential translation or activity of the APR alleles of the maizehm1gene at different stages of development. Using a combination of molecular genetics, biochemistry and physiology, we present multiple lines of evidence that demonstrate that APR is a feature or symptom of weak forms of resistance. While the mature parts of the plant are metabolically robust enough to manifest resistance, seedling tissues are not, leaving them vulnerable to disease. Growth conditions that compromise the photosynthetic output of the plant further deteriorate the ability of the seedlings to protect themselves from pathogens.One sentence summaryCharacterization of adult plant resistance in the maize-CCR1 pathosystem reveals a causal link between weak resistance and APR.


2017 ◽  
Vol 115 (1) ◽  
pp. 210-215 ◽  
Author(s):  
Justin W. Walley ◽  
Zhouxin Shen ◽  
Maxwell R. McReynolds ◽  
Eric A. Schmelz ◽  
Steven P. Briggs

Lysine acetylation is a key posttranslational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established, and it is known that pathogen effector proteins encoding acetyltransferases can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can modulate protein acetylation during an immune response. Here, we investigate how the effector molecule HC-toxin (HCT), a histone deacetylase inhibitor produced by the fungal pathogen Cochliobolus carbonum race 1, promotes virulence in maize through altering protein acetylation. Using mass spectrometry, we globally quantified the abundance of 3,636 proteins and the levels of acetylation at 2,791 sites in maize plants treated with HCT as well as HCT-deficient or HCT-producing strains of C. carbonum. Analyses of these data demonstrate that acetylation is a widespread posttranslational modification impacting proteins encoded by many intensively studied maize genes. Furthermore, the application of exogenous HCT enabled us to show that the activity of plant-encoded enzymes (histone deacetylases) can be modulated to alter acetylation of nonhistone proteins during an immune response. Collectively, these results provide a resource for further mechanistic studies examining the regulation of protein function by reversible acetylation and offer insight into the complex immune response triggered by virulent C. carbonum.


2016 ◽  
Author(s):  
Justin W Walley ◽  
Zhouxin Shen ◽  
Maxwell R. McReynolds ◽  
Steven P. Briggs

ABSTRACTLysine acetylation is a key post-translational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established and it is known that pathogen effector proteins encoding acetyltransferses can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can modulate protein acetylation during an immune response. Here we investigate how the effector molecule HC-toxin, a histone deacetylase inhibitor, produced by Cochliobolus carbonum race 1 promotes pathogen virulence in maize through altering protein acetylation. Using mass spectrometry we globally quantified the abundance of 3,636 proteins and the levels of acetylation at 2,791 sites in maize plants treated with HC-toxin as well as HC-toxin deficient or producing strains of C. carbonum. Analyses of these data demonstrate that acetylation is a widespread post-translational modification impacting proteins encoded by many intensively studied maize genes. Furthermore, the application of exogenous HC-toxin enabled us to show that the activity of plant-encoded enzymes can be modulated to alter acetylation of non-histone proteins during an immune response. Collectively, these results provide a resource for further mechanistic studies examining the regulation of protein function and offer insight into the complex immune response triggered by virulent C. carbonum.


2016 ◽  
Vol 35 (5) ◽  
pp. 2535-2542 ◽  
Author(s):  
WENJIE ZHOU ◽  
XIAOXUN CHEN ◽  
KE HE ◽  
JINFENG XIAO ◽  
XIAOPENG DUAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document