scholarly journals The Colletotrichum lagenarium Ste12-Like Gene CST1 Is Essential for Appressorium Penetration

2003 ◽  
Vol 16 (4) ◽  
pp. 315-325 ◽  
Author(s):  
Gento Tsuji ◽  
Satoshi Fujii ◽  
Seiji Tsuge ◽  
Tomonori Shiraishi ◽  
Yasuyuki Kubo

Colletotrichum lagenarium is the causal agent of anthracnose of cucumber. This fungus produces a darkly melanized infection structure, appressoria, to penetrate the host leaves. The C. lagenarium CMK1 gene, a homologue of the Saccharomyces cerevisiae FUS3/KSS1 mitogen-activated protein (MAP) kinase genes, was shown to regulate conidial germination, appressorium formation, and invasive growth. In S. cerevisiae, Ste12p is known to be a transcriptional factor downstream of Fus3p/Kss1p MAP kinases. To evaluate the CMK1 MAP kinase pathway, we isolated the Ste12 homologue CST1 gene from C. lagenarium and characterized. The cst1Δ strains were nonpathogenic on intact host leaves, but could form lesions when inoculated on wounded leaves. Conidia of the cst1Δ strains could germinate and form melanized appressoria on both host leaf surface and artificial cellulose membrane, but could not produce infectious hyphae from appressoria, suggesting that CST1 is essential for appressorium penetration in C. lagenarium. In addition, matured appressoria of the cst1Δ strains contained an extremely low level of lipid droplets compared with that of the wild-type strain. Lipid droplets were abundant in conidia of the cst1Δ strains, but rapidly disappeared during appressorium formation. This misscheduled lipid degradation might be related to the failure of appressorium penetration in the cst1Δ strain.

2017 ◽  
Vol 17 (4) ◽  
pp. 550-564 ◽  
Author(s):  
Joel Basken ◽  
Scott A. Stuart ◽  
Andrew J. Kavran ◽  
Thomas Lee ◽  
Christopher C. Ebmeier ◽  
...  

1996 ◽  
Vol 271 (36) ◽  
pp. 22251-22255 ◽  
Author(s):  
Zhizhuang Zhao ◽  
Zhongjia Tan ◽  
Curtis D. Diltz ◽  
Min You ◽  
Edmond H. Fischer

Endocrinology ◽  
2003 ◽  
Vol 144 (4) ◽  
pp. 1139-1142 ◽  
Author(s):  
Wing-Yee Lui ◽  
Ching-Hang Wong ◽  
Dolores D. Mruk ◽  
C. Yan Cheng

2004 ◽  
Vol 3 (2) ◽  
pp. 557-560 ◽  
Author(s):  
Tao Xue ◽  
C. Kim Nguyen ◽  
Angela Romans ◽  
Gregory S. May

ABSTRACT We show that the mitogen-activated protein (MAP) kinase pathway that responds to osmotic stress in Aspergillus fumigatus is also involved in nutritional sensing. This MAP kinase regulates conidial germination in response to the nitrogen source and is activated upon starvation for either carbon or nitrogen during vegetative growth.


1995 ◽  
Vol 15 (7) ◽  
pp. 3644-3653 ◽  
Author(s):  
R R Vaillancourt ◽  
L E Heasley ◽  
J Zamarripa ◽  
B Storey ◽  
M Valius ◽  
...  

When expressed in PC12 cells, the platelet-derived growth factor beta receptor (beta PDGF-R) mediates cell differentiation. Mutational analysis of the beta PDGF-R indicated that persistent receptor stimulation of the Ras/Raf/mitogen-activated protein (MAP) kinase pathway alone was insufficient to sustain PC12 cell differentiation. PDGF receptor activation of signal pathways involving p60c-src or the persistent regulation of phospholipase C gamma was required for PC12 cell differentiation. beta PDGF-R regulation of phosphatidylinositol 3-kinase, the GTPase-activating protein of Ras, and the tyrosine phosphatase, Syp, was not required for PC12 cell differentiation. In contrast to overexpression of oncoproteins involved in regulating the MAP kinase pathway, growth factor receptor-mediated differentiation of PC12 cells requires the integration of other signals with the Ras/Raf/MAP kinase pathway.


1992 ◽  
Vol 287 (1) ◽  
pp. 269-276 ◽  
Author(s):  
M R Gold ◽  
J S Sanghera ◽  
J Stewart ◽  
S L Pelech

Cross-linking of membrane immunoglobulin (mIg), the B lymphocyte antigen receptor, with anti-receptor antibodies stimulates tyrosine phosphorylation of a number of proteins, including one of 42 kDa. Proteins with a similar molecular mass are tyrosine-phosphorylated in response to receptor stimulation in other cell types and have been identified as serine/threonine kinases, termed mitogen-activated protein (MAP) kinases or extracellular signal-regulated kinases (ERKs). The MAP kinases constitute a family of related kinases, at least three of which have molecular masses of 40-45 kDa. In this paper we show that mIg cross-linking stimulated the myelin basic protein phosphotransferase activity characteristic of MAP kinase in both mature and immature murine B cell lines. This enzyme activity co-purified on three different columns with a 42 kDa protein that was tyrosine-phosphorylated (pp42) in response to mIg cross-linking and which reacted with a panel of anti-(MAP kinase) antibodies. Although immunoblotting with the anti-(MAP kinase) antibodies showed that these B cell lines expressed both 42 kDa and 44 kDa forms of MAP kinase, only the 42 kDa form was activated and tyrosine-phosphorylated to a significant extent. Activation of protein kinase C (PKC) with phorbol esters also resulted in selective tyrosine phosphorylation and activation of the 42 kDa MAP kinase. This suggested that mIg-induced MAP kinase activation could be due to stimulation of PKC by mIg. However, mIg-stimulated MAP kinase activation and pp42 tyrosine phosphorylation was only partially blocked by a PKC inhibitor, the staurosporine analogue Compound 3. In contrast, Compound 3 completely blocked the ability of phorbol esters to stimulate MAP kinase activity and induce tyrosine phosphorylation of pp42. Thus mIg may activate MAP kinase by both PKC-dependent and -independent mechanisms.


Sign in / Sign up

Export Citation Format

Share Document