scholarly journals Surveying the Sweetpotato Rhizosphere, Endophyte, and Surrounding Soil Microbiomes at Two North Carolina Farms Reveals Underpinnings of Sweetpotato Microbiome Community Assembly

2020 ◽  
Vol 4 (1) ◽  
pp. 75-89
Author(s):  
C. Pepe-Ranney ◽  
C. Keyser ◽  
J. K. Trimble ◽  
B. Bissinger

Farmers grow sweetpotatoes worldwide and some sub-Saharan African and Asian diets include sweetpotato as a staple, yet the sweetpotato microbiome is conspicuously less studied relative to crops such as maize, soybean, and wheat. Studying sweetpotato microbiome ecology may reveal paths to engineer the microbiome to improve sweetpotato yield, and/or combat sweetpotato pests and diseases. We sampled sweetpotatoes and surrounding soil from two North Carolina farms. We took samples from sweetpotato fields under two different land management regimes, conventional and organic, and collected two sweetpotato cultivars, ‘Beauregard’ and ‘Covington’. By comparing small subunit rRNA gene amplicon sequence profiles from sweetpotato storage root skin, rhizosphere, and surrounding soil, we found the skin microbiome possessed the least composition heterogeneity among samples, lowest alpha-diversity, and was significantly nested by the rhizosphere in amplicon sequence variant (ASV) membership. Many ASVs were specific to a single field and/or only found in either the skin, rhizosphere, or surrounding soil. Notably, sweetpotato skin enriched for Planctomycetaceae in relative abundance at both farms. This study elucidates underpinnings of sweetpotato microbiome community assembly, quantifies microbiome composition variance within a single farm, and reveals microorganisms associated with sweetpotato skin that belong to common but uncultured soil phylotypes. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

2019 ◽  
Author(s):  
C Pepe-Ranney ◽  
C Keyser ◽  
J Trimble ◽  
B Bissinger

AbstractFarmers grow sweetpotatoes worldwide and some sub-Saharan African and Asian diets include sweetpotato as a staple, yet the sweetpotato microbiome is conspicuously less studied relative to crops such as maize, soybean, and wheat. Studying sweetpotato microbiome ecology may reveal paths to engineer the microbiome to improve sweetpotato yield, and/or combat sweetpotato pests and diseases. We sampled sweetpotatoes and surrounding soil from two North Carolina farms. We took samples from sweetpotato fields under two different land management regimes, conventional and organic, and collected two sweetpotato cultivars, ‘Beauregard’ and ‘Covington’. By comparing SSU rRNA gene amplicon sequence profiles from sweetpotato storage root skin, rhizosphere, and surrounding soil we found the skin microbiome possessed the least composition heterogeneity among samples and lowest alpha-diversity and was significantly nested by the rhizosphere in amplicon sequence variant (ASV) membership. Many ASVs were specific to a single field and/or only found in either the skin, rhizosphere, or surrounding soil. Notably, sweetpotato skin enriched for Planctomycetaceae in relative abundance at both farms. This study elucidates underpinnings of sweetpotato microbiome community assembly, quantifies microbiome composition variance within a single farm, and reveals microorganisms associated with sweetpotato skin that belong to common but uncultured soil phylotypes.


Nematology ◽  
2015 ◽  
Vol 17 (5) ◽  
pp. 567-580
Author(s):  
Weimin Ye ◽  
Qing Yu ◽  
Natsumi Kanzaki ◽  
Paul R. Adams ◽  
Yasmin J. Cardoza

During a survey of entomopathogenic nematodes in North Carolina, USA, aPristionchusspecies was recovered using theGalleriabait method. Morphological studies with light microscopy and scanning electron microscopy, mating tests with reference strains, as well as molecular analyses of the near-full-length small subunit rRNA gene (18S) and D2-D3 expansion segments of the large subunit rRNA gene (28S) identified this isolate asPristionchus aerivorus. ExposedGallerialarvae were killed within 48 h and high numbers of nematodes were recovered from the cadavers about 5 days later. Preliminary tests revealed that this nematode is capable of infecting at least two other insect species (Helicoverpa zeaandTenebrio molitor) under laboratory conditions. The status of the genusChroniodiplogasteris discussed and confirmed as a junior synonym ofPristionchusbased on morphological observation and molecular phylogenetic analysis.


2020 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Abdul Ghafar ◽  
Anson V. Koehler ◽  
Ross S. Hall ◽  
Charles G. Gauci ◽  
Robin B. Gasser ◽  
...  

Protists of the genera Babesia and Theileria (piroplasms) cause some of the most prevalent and debilitating diseases for bovines worldwide. In this study, we established and used a next-generation sequencing-informatic approach to explore the composition of Babesia and Theileria populations in cattle and water buffalo in a country (Pakistan) endemic for these pathogens. We collected individual blood samples from cattle (n = 212) and water buffalo (n = 154), extracted genomic DNAs, PCR-amplified the V4 hypervariable region of 18S small subunit rRNA gene from piroplasms, sequenced amplicons using Illumina technology, and then analysed data using bioinformatic platforms. The results revealed piroplasms in 68.9% (252/366) samples, with overall occurrence being markedly higher in cattle (85.8%) than in water buffaloes (45.5%). Babesia (B.) occultans and Theileria (T.) lestoquardi-like species were recorded for the first time in Pakistan, and, overall, T. annulata was most commonly detected (65.8%) followed by B. bovis (7.1%), B. bigemina (4.4%), and T. orientalis (0.5%), with the genetic variability within B. bovis being pronounced. The occurrence and composition of piroplasm species varied markedly across different agro-ecological zones. The high detection of T. annulata in asymptomatic animals suggested a relatively high level of endemic stability of tropical theileriosis in the bovine population.


2006 ◽  
Vol 72 (10) ◽  
pp. 6452-6460 ◽  
Author(s):  
Paul J. Hunter ◽  
Geoff M. Petch ◽  
Leo A. Calvo-Bado ◽  
Tim R. Pettitt ◽  
Nick R. Parsons ◽  
...  

ABSTRACT The microbiological characteristics associated with disease-suppressive peats are unclear. We used a bioassay for Pythium sylvaticum-induced damping-off of cress seedlings to identify conducive and suppressive peats. Microbial activity in unconditioned peats was negatively correlated with the counts of P. sylvaticum at the end of the bioassay. Denaturing gradient gel electrophoresis (DGGE) profiling and clone library analyses of small-subunit rRNA gene sequences from two suppressive and two conducive peats differed in the bacterial profiles generated and the diversity of sequence populations. There were also significant differences between bacterial sequence populations from suppressive and conducive peats. The frequencies of a number of microbial groups, including the Rhizobium-Agrobacterium group (specifically sequences similar to those for the genera Ochrobactrum and Zoogloea) and the Acidobacteria, increased specifically in the suppressive peats, although no single bacterial group was associated with disease suppression. Fungal DGGE profiles varied little over the course of the bioassay; however, two bands associated specifically with suppressive samples were detected. Sequences from these bands corresponded to Basidiomycete yeast genera. Although the DGGE profiles were similar, fungal sequence diversity also increased during the bioassay. Sequences highly similar to those of Cryptococcus increased in relative abundance during the bioassay, particularly in the suppressive samples. This study highlights the importance of using complementary approaches to molecular profiling of complex populations and provides the first report that basidiomycetous yeasts may be associated with the suppression of Pythium-induced diseases in peats.


Parasitology ◽  
2008 ◽  
Vol 135 (6) ◽  
pp. 691-699 ◽  
Author(s):  
A. SAITO-ITO ◽  
N. TAKADA ◽  
F. ISHIGURO ◽  
H. FUJITA ◽  
Y. YANO ◽  
...  

SUMMARYField rodent surveys forBabesiainfection were performed from 2002 to 2005 in the vicinities of human babesiosis occurrences in Taiwan and mainland China.Babesia microtiwas identified by microscopical examination and/or PCR in 1Rattus coxingaand 1Crocidura horsfieldiiin central Taiwan and in 13Niviventer confucianusand 1Apodemus agrariusin Zhejiang and Fujian Provinces of southeastern China. Of 15B. microtisamples detected by PCR, all except 1 were shown to be the Kobe-type, the aetiological small subunit rRNA gene-type of the first Japanese patient; the exception was also a Kobe-related type. The Kobe-type had been found in rodents only in a few places including the human infection occurrence place in Japan. The internal transcribed spacer 1 to 2 sequences of the Taiwanese and Chinese Kobe-types were very similar to each other but considerably different (approx. 94% pairwise identities) from that of the Japanese Kobe-type. A Taiwanese Kobe-type strain was serologically differentiated from the Kobe strain originating from the Japanese first patient. The distribution of the Kobe-type in the vicinities of human babesiosis occurrences in Taiwan and China as well as in Japan is suggestive of involvement of the Kobe-type in Asian human babesiosis.


2003 ◽  
Vol 126 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Christophe Noël ◽  
Corinne Peyronnet ◽  
Delphine Gerbod ◽  
Virginia P Edgcomb ◽  
Pilar Delgado-Viscogliosi ◽  
...  

1998 ◽  
Vol 64 (12) ◽  
pp. 5064-5066 ◽  
Author(s):  
Clifford F. Brunk ◽  
Nicole Eis

ABSTRACT Comparative PCR amplification of small-subunit (SSU) rRNA gene (rDNA) sequences indicates substantial preferential PCR amplification of pJP27 sequences with korarchaeote-specific PCR primers. The coamplification of a modified SSU rDNA sequence can be used as an internal standard to determine the amount of a specific SSU rDNA sequence.


1994 ◽  
Vol 64 (3-4) ◽  
pp. 273-283 ◽  
Author(s):  
R. A. Hutson ◽  
D. E. Thompson ◽  
P. A. Lawson ◽  
R. P. Schocken-Itturino ◽  
E. C. B�ttger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document