scholarly journals Surveying the sweetpotato rhizosphere, endophyte, and surrounding soil microbiomes at two North Carolina farms reveals underpinnings of sweetpotato microbiome community assembly

2019 ◽  
Author(s):  
C Pepe-Ranney ◽  
C Keyser ◽  
J Trimble ◽  
B Bissinger

AbstractFarmers grow sweetpotatoes worldwide and some sub-Saharan African and Asian diets include sweetpotato as a staple, yet the sweetpotato microbiome is conspicuously less studied relative to crops such as maize, soybean, and wheat. Studying sweetpotato microbiome ecology may reveal paths to engineer the microbiome to improve sweetpotato yield, and/or combat sweetpotato pests and diseases. We sampled sweetpotatoes and surrounding soil from two North Carolina farms. We took samples from sweetpotato fields under two different land management regimes, conventional and organic, and collected two sweetpotato cultivars, ‘Beauregard’ and ‘Covington’. By comparing SSU rRNA gene amplicon sequence profiles from sweetpotato storage root skin, rhizosphere, and surrounding soil we found the skin microbiome possessed the least composition heterogeneity among samples and lowest alpha-diversity and was significantly nested by the rhizosphere in amplicon sequence variant (ASV) membership. Many ASVs were specific to a single field and/or only found in either the skin, rhizosphere, or surrounding soil. Notably, sweetpotato skin enriched for Planctomycetaceae in relative abundance at both farms. This study elucidates underpinnings of sweetpotato microbiome community assembly, quantifies microbiome composition variance within a single farm, and reveals microorganisms associated with sweetpotato skin that belong to common but uncultured soil phylotypes.

2020 ◽  
Vol 4 (1) ◽  
pp. 75-89
Author(s):  
C. Pepe-Ranney ◽  
C. Keyser ◽  
J. K. Trimble ◽  
B. Bissinger

Farmers grow sweetpotatoes worldwide and some sub-Saharan African and Asian diets include sweetpotato as a staple, yet the sweetpotato microbiome is conspicuously less studied relative to crops such as maize, soybean, and wheat. Studying sweetpotato microbiome ecology may reveal paths to engineer the microbiome to improve sweetpotato yield, and/or combat sweetpotato pests and diseases. We sampled sweetpotatoes and surrounding soil from two North Carolina farms. We took samples from sweetpotato fields under two different land management regimes, conventional and organic, and collected two sweetpotato cultivars, ‘Beauregard’ and ‘Covington’. By comparing small subunit rRNA gene amplicon sequence profiles from sweetpotato storage root skin, rhizosphere, and surrounding soil, we found the skin microbiome possessed the least composition heterogeneity among samples, lowest alpha-diversity, and was significantly nested by the rhizosphere in amplicon sequence variant (ASV) membership. Many ASVs were specific to a single field and/or only found in either the skin, rhizosphere, or surrounding soil. Notably, sweetpotato skin enriched for Planctomycetaceae in relative abundance at both farms. This study elucidates underpinnings of sweetpotato microbiome community assembly, quantifies microbiome composition variance within a single farm, and reveals microorganisms associated with sweetpotato skin that belong to common but uncultured soil phylotypes. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


2021 ◽  
Vol 8 ◽  
Author(s):  
Robert Valeris-Chacin ◽  
Maria Pieters ◽  
Haejin Hwang ◽  
Timothy J. Johnson ◽  
Randall S. Singer

Infection with Campylobacter species is one of the leading causes of bacterial diarrhea in humans in the US. Chickens, which become colonized on the farm, are important reservoirs of this bacterium. Campylobacter can establish itself in the broiler house via a variety of sources, can survive in the litter of the house, and possibly persist over successive flock cycles. However, the role of the broiler litter microbiome on Campylobacter persistence is not clear. A matched case-control study was conducted to determine whether the broiler litter microbiome composition was associated with Campylobacter isolation within the broiler house. Flocks were classified as cases when either Campylobacter jejuni or Campylobacter coli was isolated in boot sock samples, or as controls otherwise. Case and control flocks were matched at the broiler house level. Composite broiler litter samples were collected and used for DNA extraction and 16S rRNA gene V4 region sequencing. Reads were processed using the DADA2 pipeline to obtain a table of amplicon sequence variants. Alpha diversity and differential bacterial relative abundance were used as predictors of Campylobacter isolation status in conditional logistic regression models adjusting for flock age and sampling season. Beta diversity distances were used as regressors in stratified PERMANOVA with Campylobacter isolation status as predictor, and broiler house as stratum. When Campylobacter was isolated in boot socks, broiler litter microbiome richness and evenness were lower and higher, respectively, without reaching statistical significance. Campylobacter isolation status significantly explained a small proportion of the beta diversity (genus-level Aitchison dissimilarity distance). Clostridium and Anaerostipes were positively associated with Campylobacter isolation status, whereas Bifidobacterium, Anaerosporobacter, and Stenotrophomonas were negatively associated. Our results suggest the presence of bacterial interactions between Campylobacter and the broiler litter microbiome. The negative association of Campylobacter with Bifidobacterium, Anaerosporobacter, and Stenotrophomonas in litter could be potentially exploited as a pre-harvest control strategy.


2021 ◽  
Author(s):  
Amrapali Rajput ◽  
Shipeng Zhou ◽  
Madhava Meegaskumbura

It is known that animal-associated microbiomes form indispensable relationships with hosts and are responsible for many functions important for host-survival. Next-gen driven approaches documenting the remarkable diversity of microbiomes have burgeoned, with amphibians too, benefiting from such treatments. The microbiome of Gymnophiona (caecilians), one of the three amphibian orders, constituting of 3% of amphibians, however, remains almost unknown. The present study aims to address this knowledge gap through analysis of the microbiome of Ichthyophis bannanicus. As these caecilian larvae are aquatic and hence exposed to a greater propensity for bacterial microbiomic interchange, we hypothesize that bacterial phyla would overlap between gut and skin. Further, from the host-specificity patterns observed in other vertebrate taxa, we hypothesize that Gymnophiona have different dominant gut bacterial microbiomes at a higher taxonomic level when compared to the larvae of the other two amphibian orders (Anura and Caudata). We used 16S rRNA gene amplicon sequencing based on Illumina Nova sequencing platform to characterize and compare the gut (represented by faecal samples) and skin microbiome of I. bannanicus larvae (N = 13), a species distributed across South-East-Asia and the only caecilian species occurring in China. We compared our gut microbiome results with published anuran and caudate larval microbiomes. For I. bannanicus, a total of 4,053 operational taxonomic units (OTU) across 13 samples were detected. Alpha-diversity indices were significant between gut and skin samples. Non-metric multidimensional scaling analysis suggest that gut and skin samples each contained a distinct microbiome at OTU level. We record significant differences between the bacterial phyla of gut and skin samples in larvae of I. bannanicus. The study provides an overview of gut and skin bacterial microbiomes of a caecilian, while highlighting the major differences between larval microbiomes of the three amphibian orders. We find a partial overlap of gut bacterial microbiomes at phylum level for the three orders; however, the relative abundance of the dominant phyla is distinct. The skin and gut microbiomes are distinct with little overlap of species, highlighting that gut-skin axis is weak. This in turn suggests that many of the microbial species on skin and gut are functionally specialized to those locations. We also show that the skin microbiome is more diverse than the gut microbiome at species level; however, a reason for this could be a portion of the gut microbiome not being represented in faecal samples. These first microbiome information from a caecilian lay the foundation for comparative studies of the three amphibian orders.


2019 ◽  
Vol 50 (1) ◽  
Author(s):  
Meera Surendran Nair ◽  
Tyson Eucker ◽  
Brian Martinson ◽  
Axel Neubauer ◽  
Joseph Victoria ◽  
...  

Abstract This study investigated the influence of gut microbiome composition in modulating susceptibility to Mycoplasma hyopneumoniae in pigs. Thirty-two conventional M. hyopneumoniae free piglets were randomly selected from six different litters at 3 weeks of age and were experimentally inoculated with M. hyopneumoniae at 8 weeks of age. Lung lesion scores (LS) were recorded 4 weeks post-inoculation (12 weeks of age) from piglet lungs at necropsy. Fecal bacterial community composition of piglets at 3, 8 and 12 weeks of age were targeted by amplifying the V3–V4 region of the 16S rRNA gene. The LS ranged from 0.3 to 43% with an evident clustering of the scores observed in piglets within litters. There were significant differences in species richness and alpha diversity in fecal microbiomes among piglets within litters at different time points (p < 0.05). The dissimilarity matrices indicated that at 3 weeks of age, the fecal microbiota of piglets was more dissimilar compared to those from 8 to 12 weeks of age. Specific groups of bacteria in the gut that might predict the decreased severity of M. hyopneumoniae associated lesions were identified. The microbial shift at 3 weeks of age was observed to be driven by the increase in abundance of the indicator family, Ruminococcaceae in piglets with low LS (p < 0.05). The taxa, Ruminococcus_2 having the highest richness scores, correlated significantly between litters showing stronger associations with the lowest LS (r = −0.49, p = 0.005). These findings suggest that early life gut microbiota can be a potential determinant for M. hyopneumoniae susceptibility in pigs.


Author(s):  
Jennifer Holder-Murray ◽  
Andrew Yeh ◽  
Matthew B Rogers ◽  
Brian Firek ◽  
Brandon Mahler ◽  
...  

Abstract Background Although the healthy human skin microbiome has been the subject of recent studies, it is not known whether alterations among commensal microbes contribute to surgical site infections (SSIs). Our objective in this study was to characterize temporal and spatial variation in the skin microbiota of patients undergoing colorectal surgery and determine if dysbiosis contributes to SSIs. Methods Sixty one adults scheduled to undergo elective colon or rectal resection were identified by convenience sampling. By analyzing bacterial 16S rRNA gene sequences isolated from clinical samples, we used a culture-independent strategy to monitor perioperative changes in microbial diversity of fecal samples and the skin. Results A total of 990 samples from 61 patients were analyzed. Alpha diversity on the skin decreased after surgery but later recovered at the postoperative clinic visit. In most patients, we observed a transient postoperative loss of skin commensals (Corynebacterium and Propionibacterium) at the surgical site, which were replaced by potential pathogens and intestinal anaerobes (eg, Enterobacteriaceae). These changes were not observed on skin that was uninvolved in the surgical incision (chest wall). One patient developed a wound infection. Incisional skin swabs from this patient demonstrated a sharp postoperative increase in the abundance of Enterococcus, which was also cultured from wound drainage. Conclusions We observed reproducible perioperative changes in the skin microbiome following surgery. The low incidence of SSIs in this cohort precluded analysis of associations between dysbiosis and infection. We postulate that real-time monitoring of the skin microbiome could provide actionable findings about the pathogenesis of SSIs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rie Dybboe Bjerre ◽  
Luisa Warchavchik Hugerth ◽  
Fredrik Boulund ◽  
Maike Seifert ◽  
Jeanne Duus Johansen ◽  
...  

AbstractThe human skin is colonized by a wide array of microorganisms playing a role in skin disorders. Studying the skin microbiome provides unique obstacles such as low microbial biomass. The objective of this study was to establish methodology for skin microbiome analyses, focusing on sampling technique and DNA extraction. Skin swabs and scrapes were collected from 9 healthy adult subjects, and DNA extracted using 12 commercial kits. All 165 samples were sequenced using the 16S rRNA gene. Comparing the populations captured by eSwabs and scrapes, 99.3% of sequences overlapped. Using eSwabs yielded higher consistency. The success rate of library preparation applying different DNA extraction kits ranged from 39% to 100%. Some kits had higher Shannon alpha-diversity. Metagenomic shotgun analyses were performed on a subset of samples (N = 12). These data indicate that a reduction of human DNA from 90% to 57% is feasible without lowering the success of 16S rRNA library preparation and without introducing taxonomic bias. Using swabs is a reliable technique to investigate the skin microbiome. DNA extraction methodology is crucial for success of sequencing and adds a substantial amount of variation in microbiome analyses. Reduction of host DNA is recommended for interventional studies applying metagenomics.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 393-393
Author(s):  
Moamen Elmassry ◽  
Eunhee Chung ◽  
Abdul Hamood ◽  
Chwan-Li Shen

Abstract Objectives In recent years, characterization of gut microbiota composition and function were linked to the progression of type 2 diabetes mellitus. Recent evidence showed that Geranylgeraniol, an isoprenoid found in fruits, vegetables, and grains, improves glucose homeostasis. Similarly, Tocotrienols, a subfamily of vitamin E, also contains anti-diabetic properties. In this study, we examined the combined effect of geranylgeraniol and tocotrienols on the composition and function of gut microbiome in obese male mice. Methods Forty male C57BL/6J mice were assigned to 4 groups in a factorial design as follows: high-fat diet (HFD) (control group), HFD + geranylgeraniol [400 mg/kg diet] (GG group), HFD + tocotrienols [400 mg/kg diet] (TT group), and HFD + geranylgeraniol + tocotrienols (G + T group) for 14 weeks. 16S rRNA gene sequencing was done from cecal samples and microbiome and data analysis was performed with QIIME2 and PICRUSt2. Results Across all groups, the most abundant phyla were Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. There was no difference in alpha diversity among different groups. Different treatments influenced the relative abundance of certain bacteria. In the Bacteroidetes phylum, the relative abundance of family S24–7 increased in the TT group only. In the Firmicutes phylum, the relative abundance of family Lachnospiraceae was reduced upon the supplementation of geranylgeraniol or tocotrienols; individually or in combination. In Verrucomicrobia phylum, Akkermansia muciniphila relative abundance was reduced in the TT group but increased in the G + T group. The results of functional profiling of the gut microbiome revealed that geranylgeraniol supplementation caused an increase in the proportion of biosynthetic pathways related to purine, pyrimidine, and inosine-5’-phosphate and hexitol fermentation, and a decrease in the proportion of pathways involved in the biosynthesis of isoleucine, valine, histidine, arginine, and chorismate. The G + T group increased pathways related to thiamine diphosphate biosynthesis, and decreased others involved into sulfur oxidation and methylerythritol phosphate. Conclusions The influence of geranylgeraniol and tocotrienols supplementation on gut microbiome composition and function, suggests a prebiotic potential for the potential of geranylgeraniol and tocotrienols. Funding Sources American River Nutrition, LLC, Hadley, MA.


Author(s):  
Chin-Hee Song ◽  
Nayoung Kim ◽  
Ryoung Hee Nam ◽  
Soo In Choi ◽  
Jeong Eun Yu ◽  
...  

The frequency of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in male mice is higher than that in female mice. Previous studies have reported that 17β-estradiol inhibits tumorigenesis in males by modulating nuclear factor-erythroid 2-related factor 2 (Nrf2). This study aimed to investigate the changes in mouse gut microbiome composition based on sex, AOM/DSS-induced colorectal cancer (CRC), and Nrf2 genotype. The gut microbiome composition was determined by 16S rRNA gene sequencing fecal samples obtained at week 16 post-AOM administration. In terms of sex differences, our results showed that the wild-type (WT) male control mice had higher alpha diversity (i.e. Chao1, Shannon, and Simpson) than the WT female control mice. The linear discriminant analysis effect size (LEfSe) results revealed that the abundances of Akkermansia muciniphila and Lactobacillus murinus were higher in WT male control mice than in WT female controls. In terms of colon tumorigenesis, the alpha diversity of the male CRC group was lower than that of the male controls in both WT and Nrf2 KO, but did not show such changes in females. Furthermore, the abundance of A. muciniphila was higher in male CRC groups than in male controls in both WT and Nrf2 KO. The abundance of Bacteroides vulgatus was higher in WT CRC groups than in WT controls in both males and females. However, the abundance of L. murinus was lower in WT female CRC and Nrf2 KO male CRC groups than in its controls. The abundance of A. muciniphila was not altered by Nrf2 KO. In contrast, the abundances of L. murinus and B. vulgatus were changed differently by Nrf2 KO depending on sex and CRC. Interestingly, L. murinus showed negative correlation with tumor numbers in the whole colon. In addition, B. vulgatus showed positive correlation with inflammatory markers (i.e. myeloperoxidase and IL-1β levels), tumor numbers, and high-grade adenoma, especially, developed mucosal and submucosal invasive adenocarcinoma at the distal part of the colon. In conclusion, Nrf2 differentially alters the gut microbiota composition depending on sex and CRC induction.


Author(s):  
Naoki Toyama ◽  
Daisuke Ekuni ◽  
Daisuke Matsui ◽  
Teruhide Koyama ◽  
Masahiro Nakatochi ◽  
...  

Few studies have exhaustively assessed relationships among polymorphisms, the microbiome, and periodontitis. The objective of the present study was to assess associations simultaneously among polymorphisms, the microbiome, and periodontitis. We used propensity score matching with a 1:1 ratio to select subjects, and then 22 individuals (mean age ± standard deviation, 60.7 ± 9.9 years) were analyzed. After saliva collection, V3-4 regions of the 16S rRNA gene were sequenced to investigate microbiome composition, alpha diversity (Shannon index, Simpson index, Chao1, and abundance-based coverage estimator) and beta diversity using principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distances. A total of 51 single-nucleotide polymorphisms (SNPs) related to periodontitis were identified. The frequencies of SNPs were collected from Genome-Wide Association Study data. The PCoA of unweighted UniFrac distance showed a significant difference between periodontitis and control groups (p < 0.05). There were no significant differences in alpha diversity and PCoA of weighted UniFrac distance (p > 0.05). Two families (Lactobacillaceae and Desulfobulbaceae) and one species (Porphyromonas gingivalis) were observed only in the periodontitis group. No SNPs showed significant expression. These results suggest that periodontitis was related to the presence of P. gingivalis and the families Lactobacillaceae and Desulfobulbaceae but not SNPs.


2020 ◽  
Author(s):  
Dandan Jiang ◽  
Xin He ◽  
Marc Valitutto ◽  
Li Chen ◽  
Qin Xu ◽  
...  

Abstract Background:The Chinese monal (Lophophorus lhuysii) is an endangered bird species, with a wild population restricted to the mountains of southwest China, and only one known captive population in the world. We investigated the fecal microbiota and metabolomics of wild and captive Chinese monals to explore differences and similarities in nutritional status and digestive characteristics. An integrated approach combining 16S ribosomal rRNA (16S rRNA) gene sequencing and ultra-high performance liquid chromatograph (UHPLC) based metabolomics were used to examine the fecal microbiome composition and the metabolomic profile of Chinese monals. Results: The results showed that the alpha diversity of gut microbes in the wild group were significantly higher than that in the captive group and the core bacterial species in the two groups showed remarkable differences at all levels. Metabolomic profiling revealed a concurrent difference, mainly related to galactose, starch and sucrose metabolism, fatty acid, bile acid biosynthesis and bile secretion. Furthermore, these metabolites in difference are have a strong correlation with the main microbe in genus level.Conclusions: Various factors related to diet and environmental conditions played a crucial role in shaping the gut microbiome composition and metabolomic profile. Through this study, we have established a baseline for a normal gut microbiome and metabolomic profile for wild Chinese monals, thus allowing us to evaluate if differences seen in captive specimens has an impact on their overall health and reproduction.


Sign in / Sign up

Export Citation Format

Share Document