scholarly journals New Genotypes of Fusarium oxysporum f. sp. vasinfectum from the Southeastern United States

Plant Disease ◽  
2009 ◽  
Vol 93 (12) ◽  
pp. 1298-1304 ◽  
Author(s):  
E. A. Holmes ◽  
R. S. Bennett ◽  
D. W. Spurgeon ◽  
P. D. Colyer ◽  
R. M. Davis

Sixty-one isolates of Fusarium oxysporum f. sp. vasinfectum were collected from cotton plants (Gossypium spp.) with symptoms of Fusarium wilt to determine the composition of races present in the southeastern United States. Analysis of partial sequences of the translation elongation factor gene revealed four novel genotypes, as well as the presence of races 3 and 8 for the first time in the United States outside of California. The majority of isolates (16 of 27) sampled from Arkansas were novel genotypes. A subset of isolates representing the novel genotypes was compared with previously described races using sequences from translation elongation factor, phosphate permase, and β-tubulin genes and their pathogenicity on a total of six Upland (Gossypium hirsutum) and Pima (G. barbadense) cotton cultivars. Two of the novel genotypes belonged to a clade containing races 1, 2, 4, 6, and 8 and two shared ancestry with race 3. All new genotypes were pathogenic to at least some of the cotton cultivars tested. The Pima cv. Phytogen 800 was relatively resistant to all genotypes of the pathogen. These results indicate that the population of F. oxysporum f. sp. vasinfectum in the southeastern United States is more diverse than previously recognized.

Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2066-2072 ◽  
Author(s):  
A. M. Pastrana ◽  
S. C. Kirkpatrick ◽  
M. Kong ◽  
J. C. Broome ◽  
T. R. Gordon

Fusarium oxysporum has recently been identified as the cause of a wilt disease affecting blackberry in California and Mexico. Thirty-six isolates of F. oxysporum obtained from symptomatic blackberry plants in California and Mexico were comprised of nine distinct somatic compatibility groups (SCGs). Phylogenetic analysis of a concatenated data set, consisting of sequences of the translation elongation factor 1-α and β-tubulin genes and the intergenic spacer of the ribosomal DNA, identified nine three-locus sequence types, each of which corresponded to an SCG. Six SCGs were present only in California, two only in Mexico, and one in both California and Mexico. An isolate associated with the most common SCG in California was tested for pathogenicity on blueberry, raspberry, strawberry, and lettuce. All blueberry, raspberry, and lettuce plants that were inoculated remained healthy, but two of the five strawberry cultivars tested developed symptoms. The three strawberry cultivars that were resistant to the blackberry pathogen were also resistant to F. oxysporum f. sp. fragariae, the cause of Fusarium wilt of strawberry. We propose to designate strains of F. oxysporum that are pathogenic to blackberry as Fusarium oxysporum f. sp. mori forma specialis nov.


Plant Disease ◽  
2021 ◽  
Author(s):  
Shilpi Chawla ◽  
Reza A. Rafie ◽  
T. Michael Likins ◽  
Eunice Ndegwa ◽  
Shuxin Ren ◽  
...  

Ginger (Zingiber officinale Roscoe) is one of the most widely consumed medicinal herb in the world, and the U.S. imports of ginger have risen in recent years because of its health benefits. Seed rhizome and soilborne diseases are serious concerns of ginger worldwide (Stirling 2004; Moreira et al. 2013), including the recent observations of Fusarium yellows and rhizome rot in the Commonwealth of Virginia. In October 2018 and 2019, ginger plants with yellowing of leaf margins and stunted growth were uprooted from a 9.1 m × 14.6 m high tunnel (HT) and from an outdoor raised bed at Virginia State University’s Randolph farm. Disease incidence in the HT and the raised bed was estimated between 5-70%. Small pieces (2-5 mm) of symptomatic rhizomes were disinfected with 0.6% sodium hypochlorite solution and placed on potato dextrose agar (PDA) Petri plates to recover fungal isolates. Hyphal tips from these isolates were transferred to fresh PDA to obtain pure cultures. The fungal colonies were pinkish-white initially, and turned purplish-pink after 5-7 days of incubation at 25 °C. The microconidia were aseptate, oval or elliptical, hyaline, and measured 5 to 12 × 4 to 6 µm in size. Macroconidia were with 3 to 5 septations, curved like a sickle towards the ventral side, hyaline, smooth and thin-walled, and 15 to 40 × 3 to 6 µm in size. Fungal genomic DNA of one isolate (Gf-VA-3) was extracted from a 7-days old culture using PrepMan®Ultra (Thermo Fischer Scientific, Cheshire UK). Four conserved regions of the isolated pathogen, internal transcribed spacer (ITS), translation elongation factor (EF), β-tubulin (Bt), and calmodulin (cal) gene regions were amplified using ITS1 and ITS4 (White et al. 1990), ef1α and ef2α (O’Donnell et al. 1998), Bt2a and Bt2b (Glass and Donaldson 1995), and calA1 and calQ1 (Carbone and Kohn 1999), respectively. PCR products were sequenced, and amplicons deposited in GenBank with accession numbers MT337417 for ITS, MT436712 for Bt, MT802441 for cal and MW816632 for EF. A 99-100% identity with Fusarium oxysporum was matched with accession nos. MW776326 for ITS, MN646766 for the β-tubulin, MT010904 for the calmodulin and MN258350 for the translation elongation factor genes. For pathogenicity test, six 6-week-old healthy ginger plants grown on sterilized potting mix in the greenhouse were inoculated by injecting 3-ml of a 1 × 108 micro- and macro-conidia suspension per ml at the crown area transcending to the rhizome. Another set of six plants were injected with distilled and autoclaved water in the same way. After four weeks, leaves withered, plants exhibited yellowing and wilt followed by stunted growth and eventually complete collapse of the six inoculated plants, however control plants showed none of the symptoms. The same pathogen was re-isolated from the inoculated plants. The pathogenicity test was repeated, and the same results were observed. Fusarium yellows and rhizome rot has been reported from Hawaii in the U.S. (Trujillo 1963), Brazil (Moreira et al. 2013), Australia (Stirling 2004), China (Li et al. 2014), and India (Shanmugam et al. 2013). To our knowledge, this is the first report of Fusarium yellows and rhizome rot on ginger in the Continental U.S. The disease is seed rhizome and soilborne leading to poor establishment and hence economic loss in ginger production


2019 ◽  
Vol 20 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Paul N. Okello ◽  
Kristina Petrović ◽  
Brian Kontz ◽  
Febina M. Mathew

Fusarium root rot of corn (Zea mays L.) is yield-limiting in the United States, but there is no information available on the disease in South Dakota. In 2015, corn seedlings with discolored roots were arbitrarily sampled from 50 South Dakota fields, and 198 isolates were recovered. Eight species (F. acuminatum, F. boothii, F. equiseti-incarnatum complex, F. graminearum, F. oxysporum, F. proliferatum, F. solani, and F. subglutinans) were identified by morphology and translation elongation factor 1-α gene sequencing. F. graminearum (26.8%) was the most common fungus, and F. boothii (0.5%) was the least recovered. Fourteen isolates, representing the eight species, were evaluated for their pathogenicity on 2-week-old seedlings of inbred ‘B73’ using the inoculum layer method in the greenhouse. Fourteen days postinoculation, root rot severity was evaluated on a 1-to-5 rating scale and expressed as relative treatment effects (RTEs). F. proliferatum isolate P2 caused significantly greater RTE (based on 95% confidence intervals) on seedlings than the other isolates and the noninoculated control, except F. graminearum isolate FG23. This study indicates that the eight species of Fusarium are aggressive root rot pathogens of corn in South Dakota, and this information will help evaluate strategies for producers to manage these pathogens in their fields.


Plant Disease ◽  
2021 ◽  
pp. PDIS-06-20-1297
Author(s):  
Ana M. Pastrana ◽  
Dean C. Watson ◽  
Thomas R. Gordon

Fusarium oxysporum f. sp. mori, the causal agent of Fusarium wilt of blackberry, was first reported in California and Mexico in 2016. A limited survey of the population revealed this pathogen to be one of the most diverse formae speciales of F. oxysporum. We explored the possibility that strains of F. oxysporum pathogenic to commercial blackberry could also be recovered from wild blackberry (Rubus spp.) in California. For this purpose, wild Rubus species in blackberry nurseries, fruit production fields, and nearby areas were collected between 2017 and 2019. Thirty-four isolates of F. oxysporum were recovered from asymptomatic Rubus armeniacus and Rubus ursinus plants. Based on sequence of the translation elongation factor 1-α, somatic compatibility, and pathogenicity to blackberry, 16 isolates were confirmed as F. oxysporum f. sp. mori. These isolates were associated with three somatic compatibility groups, one of which was first identified in this study. Recovery of the pathogen confirmed that wild blackberry plants can act as a reservoir of inoculum of F. oxysporum f. sp. mori and that it can move from wild blackberry plants to commercial cultivars or vice versa.


2016 ◽  
Vol 141 (6) ◽  
pp. 645-652 ◽  
Author(s):  
Michelle L. Paynter ◽  
Elizabeth Czislowski ◽  
Mark E. Herrington ◽  
Elizabeth A.B. Aitken

Variation in the virulence of Fusarium oxysporum f. sp. fragariae (Fof) strains is important when evaluating the resistance of plants to this fungus. Twenty-five isolates of F. oxysporum harvested from strawberry (Fragaria ×ananassa) plants growing in Australia were characterized using pathogenicity tests, vegetative compatibility groups (VCGs), and genetic analysis of translation elongation factor 1 alpha (EF-1α). The level of disease varied depending on isolate used, indicating heterogeneous populations of Fof. Two distinct VCGs were identified and corresponded to two of the 10 lineages identified by partial EF-1α. Using a subset of Fof isolates, resistance in eight cultivars ranged from highly resistant to highly susceptible, with some cultivar × isolate interaction. ‘Strawberry Festival’, ‘QHI Sugarbaby’, and ‘DPI Rubygem’ had high levels of resistance across all isolates. Isolates from Western Australia (WA) were genetically distinct from those from Queensland (QLD) and were more virulent to ‘Camarosa’, a major cultivar grown in WA.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1557-1562 ◽  
Author(s):  
M. M. Díaz Arias ◽  
G. P. Munkvold ◽  
M. L. Ellis ◽  
L. F. S. Leandro

A 3-year survey was conducted in Iowa to characterize the distribution and frequency of species of Fusarium associated with soybean roots. Ten plants were collected from each of 40 to 57 fields each year at V2 to V5 and R3 to R4 soybean growth stages. Fusarium colonies were isolated from symptomatic and symptomless roots and identified to species based on cultural and morphological characteristics. Species identification was confirmed by amplification and sequencing of the translation elongation factor (EF1-α) gene. Fifteen species were identified; Fusarium oxysporum was isolated most frequently, accounting for more than 30% of all isolates. F. acuminatum, F. graminearum, and F. solani were also among the most frequent and widespread species. Eleven other species were recovered from few fields, accounting for less than 10% of all isolates in a given year. No consistent trends were observed in geographic distribution of species. Variability in species frequency was found between soybean growth stages. Fusarium oxysporum was recovered at higher frequency during vegetative stages (40%) than reproductive stages (22%). Conversely, species such as F. acuminatum, F. graminearum, and F. solani were recovered more often from reproductive-stage plants. No significant differences in species composition were observed among fields differing in tillage practices and row spacing.


Sign in / Sign up

Export Citation Format

Share Document