scholarly journals Population Structure of Pythium ultimum from Greenhouse Floral Crops in Michigan

Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 859-867 ◽  
Author(s):  
Johanna Del Castillo Múnera ◽  
Lina M. Quesada-Ocampo ◽  
Alejandro Rojas ◽  
Martin I. Chilvers ◽  
Mary K. Hausbeck

Pythium ultimum causes seedling damping-off and root and crown rot in greenhouse ornamental plants. To understand the population dynamics and assess population structure of P. ultimum in Michigan floriculture crops, simple sequence repeats (SSRs) were developed using the previously published P. ultimum predicted transcriptome. A total of 166 isolates sampled from 2011 to 2013 from five, one, and three greenhouses in Kalamazoo, Kent, and Wayne Counties, respectively, were analyzed using six polymorphic and fluorescently labeled SSR markers. The average unbiased Simpson’s index (λu, 0.95), evenness (E5, 0.56), and recovery of 12 major clones out of the 65 multilocus genotypes obtained, suggests that P. ultimum is not a recent introduction into Michigan greenhouses. Analyses revealed a clonal population, with limited differentiation among seasons, hosts, and counties sampled. Results also indicated the presence of common genotypes among years, suggesting that sanitation measures should be enhanced to eradicate resident P. ultimum populations. Finally, the presence of common genotypes among counties suggests that there is an exchange of infected plant material among greenhouse facilities, or that there is a common source of inoculum coming to the region. Continued monitoring of pathogen populations will enhance our understanding of population dynamics of P. ultimum in Michigan and facilitate improvement of control strategies.

Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 691-696 ◽  
Author(s):  
Jeannette Guajardo ◽  
Sebastián Saa ◽  
Natalia Riquelme ◽  
Gregory Browne ◽  
Cristian Youlton ◽  
...  

English (Persian) walnut (Juglans regia) trees affected by root and crown rot were surveyed in five regions of central Chile between 2015 and 2017. In each region, nine orchards, ranging from 1 to 21 years old, were randomly selected and inspected for incidence and severity of tree decline associated with crown and root rot. Soil and symptomatic crown and root tissues were collected and cultured in P5ARP semiselective medium to isolate potential oomycete pathogens, which were identified through morphology and molecularly using ITS sequences in the rDNA gene and beta tubulin gene. The most frequently isolated species was Phytophthora cinnamomi. Pathogenicity tests were conducted with representative oomycete isolates. P. cinnamomi, P. citrophthora, and Pythium ultimum were all pathogenic in J. regia. Nevertheless, only P. cinnamomi and P. citrophthora were pathogenic to English walnut. Py. ultimum caused limited levels of root damage to English walnut seedlings. Our research indicates that as the Chilean walnut industry has expanded, so have walnut crown and root rots induced by oomycetes.


2010 ◽  
Vol 25 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Mariana Nakova

Phytophthora is a genus of Oomycota responsible for some of the most serious diseases with great economic impact (Judelson and Blanco, 2005). While 54 species were found in the 20th century (Erwin and Ribeiro, 1996) another 51-54 new species have been identified (Brasier, 2008) since the year 2000. They are spread worldwide and have broad range of host plants - fruit trees, citrus, forest and park species. Phytophthora can cause serious damages in orchards and nurseries of apples, cherries, etc. In Bulgaria they have been found first on young apples and cherries (1998-1999) in Plovdiv region (Nakova, 2003). Surveys have been done for discovering disease symptoms in Plovdiv and Kjustendil regions. Isolates have been obtained from infected plant material (roots and stem bases) applying baiting bioassay (green apples, variety Granny Smith) and/or PARP 10 selective media. Phytophthora strains were identified based on standard morphology methods - types of colonies on PDA, CMA, V 8, type and size of sporangia, oogonia and antheridia, and oospores. Cardial temperatures for their growth were tested on CMA and PDA. For molecular studies, DNA was extracted from mycelium using the DNA extraction kit. DNA was amplified using universal primers ITS 6 and ITS 4. Amplification products concentrations were estimated by comparison with the standard DNA. Sequencing was done at the Scottish Crop Research Institute (SCRI, Dundee, Scotland). Phytophthora root and crown rot symptoms first appear in early spring. Infected trees show bud break delay, have small chlorotic leaves, and branches die all of a sudden. Later symptoms are found in August-September. Leaves of the infected trees show reddish discoloration and drop down. Both symptoms are connected with lesions (wet, necrotic in appearance) at stem bases of the trees. Disease spread was 2-3% in most gardens, only in an apple orchard in Bjaga (Plovdiv region) it was up to 8-10%. Morphologically, the isolates acquired from the apple trees were identified as Phytophthora cactorum, P. citrophthora and P. cryptogea. Cardial temperatures for their growth were tested on CMA and PDA. PCR tests with ITS primers 4 and 6 generated a band at about 800 bP. Consequent sequencing showed that 2 strains, Bg 1/1 and Bg ?, belong to Phytophthora cryptogea.


Plant Disease ◽  
1999 ◽  
Vol 83 (8) ◽  
pp. 739-745 ◽  
Author(s):  
G. T. Browne ◽  
M. A. Viveros

Etiology of a new lethal canker syndrome of almond trees was investigated in the San Joaquin Valley of California. Phytophthora citricola was isolated most frequently from cankers limited to the aboveground scion portions of trees; whereas P. cactorum usually was isolated from cankers originating at or below the soil surface. Repeated observations and isolations indicated that some of the cankers associated with each species were perennial. In pathogenicity tests, isolates of P. cactorum and P. citricola caused bark cankers in excised segments of almond shoots and branches, as well as root and crown rot on potted almond seedlings. Only P. citricola caused significant disease in root and crown tissues of peach seedlings. When pear fruits and almond seedlings were used as bait, P. cactorum and P. citricola were isolated from orchard soil, debris collected in natural depressions where scaffold branches and the tree trunk joined at a common point, and debris deposited on tree surfaces during nut harvest. Control strategies for Phytophthora diseases of almond should consider aboveground as well as belowground modes of attack by P. citricola and P. cactorum. Debris infested with these pathogens and deposited on trees during harvest may play a role in the disease epidemiology.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1089-1098 ◽  
Author(s):  
Ernesto A. Moya-Elizondo ◽  
Barry J. Jacobsen ◽  
Andrew C. Hogg ◽  
Alan T. Dyer

Fusarium pseudograminearum and Bipolaris sorokiniana are causal agents of Fusarium crown rot and common root rot, respectively, of wheat and cause significant losses worldwide. Understanding the population dynamics between these two pathogens at late stages of wheat development is needed. The effect of F. pseudograminearum and B. sorokiniana inocula applied singly or in mixtures at seeding to spring wheat ‘Hank’ was measured using seedling stand, grain yield, and pathogen populations in the first internode at heading, milk, and harvest stage of wheat development using real-time quantitative polymerase chain reaction. High and low rates of F. pseudograminearum inoculum reduced B. sorokiniana populations in field trials but B. sorokiniana inoculations did not affect F. pseudograminearum populations. Populations of both pathogens increased from heading until harvest, with F. pseudograminearum colonizing lower internodes earlier than B. sorokiniana. Neither pathogen prevented infection by the other in the first internode of wheat stems. Inoculations increased incidence of infection and co-infection relative to natural settings observed for both pathogens. At the seedling stage, both fungi, individually or combined, reduced the seedling stands when compared with a noninoculated control for the three location–years. Grain yield and F. pseudograminearum populations were inversely correlated, while B. sorokiniana populations were not correlated with yield.


1958 ◽  
Vol 36 (6) ◽  
pp. 843-863
Author(s):  
H. S. Thompson

Many fungi and bacteria were isolated from African violets affected with root and crown rot, but, of these, Pythium ultimum Trow was the only organism that proved to be pathogenic to this host. P. ultimum readily infected leaf cuttings, rooted cuttings, and the petioles and leaves of plants when these were in contact with moist infested soil. Inoculum placed against the crown of a healthy plant also caused infection, but the lesion developed slowly and usually only a small amount of tissue was decayed. On the other hand, when the crowns and roots of healthy plants were set in infested soil they remained healthy; but they became predisposed to attack when they were subjected to prolonged exposure to light of very high intensity or when the roots were infested with nematodes (Meloidogyne sp.). Alternating periods of overwatering and drying did not increase the susceptibility of these healthy plants. When young plants, large enough to be planted singly in soil, were allowed to remain in vermiculite, a nonnutritive substrate, until they yellowed and were then planted in infested soil, they became infected and completely decayed. However, plants at least a year old that had been placed in vermiculite until they yellowed and were then planted in infested soil did not become infected.Infection and decay of leaf or rooted cuttings caused by P. ultimum occurred readily throughout the range of 10°–30 °C. The disease also occurred over a wide range of soil moisture, but was favored by the higher levels.When leaf cuttings and rooted cuttings of 30 varieties of African violets were planted in infested soil, all varieties proved susceptible.


Plant Disease ◽  
2020 ◽  
Author(s):  
Tanvi Taparia ◽  
Ed Hendrix ◽  
Marc Hendriks ◽  
Marjon Krijger ◽  
Wietse de Boer ◽  
...  

Introduction: Bacterial blotch is one of the most economically important diseases of button mushrooms. Knowledge on mechanisms of disease expression, inoculum thresholds and disease management is limited to the most-well known pathogen, Pseudomonas tolaasii. Recent outbreaks in Western Europe have been attributed to ‘P. gingeri’ and P. salomonii for ginger and brown blotch, respectively, although information on their identity, infection dynamics and pathogenicity is largely lacking. Methods: The disease pressure in an experimental mushroom cultivation facility was evaluated for ‘P. gingeri’ and P. salomonii over varying inoculation densities, casing soil types, environmental humidity and cultivation cycles. The pathogen population structures in the casing soils were simultaneously tracked across the cropping cycle using highly specific and sensitive TaqmanTM-qPCR assays. Results: ‘P. gingeri’ caused disease outbreaks at lower inoculum thresholds (104 cfu/g) in the soil than P. salomonii (105 cfu/g). Ginger blotch generically declined in later harvest cycles, although brown blotch did not. Casing soils were differentially suppressive to blotch diseases, based on their composition and supplementation. Endemic pathogen populations increased across the cultivation cycle although the inoculated pathogen populations were consistent between the 1st and 2nd flush. Conclusion: ‘P. gingeri’ and P. salomonii have unique infection and population dynamics, that vary over soil types. Their endemic populations are also differently abundant in peat-based casing soils. This knowledge is essential to interpret diagnostic results from screening mushroom farms and design localized disease control strategies.


Plant Disease ◽  
2002 ◽  
Vol 86 (10) ◽  
pp. 1176-1176 ◽  
Author(s):  
S. O. Cacciola ◽  
A. Pane ◽  
F. Raudino ◽  
S. Davino

Sages are cultivated as aromatic and ornamental plants in Italy and represent the common name of certain species of Salvia and Phlomis (family Lamiaceae). In Sicily (southern Italy) during the summer of 2001, ≈40% of 1,400 2-year-old landscape plants of S. leucantha Cav. (Mexican bush sage or velvet sage) showed symptoms of stunting, chlorosis, and gradual dieback or sudden wilt, which are associated with root and crown rot. Plants were supplied by a commercial nursery, transplanted from pots in the spring, and irrigated using a trickle system. Phytophthora was isolated consistently from roots and basal stems of symptomatic plants on a BNPRAH medium (2). The species was identified as P. cryptogea Pethybr. & Laff., primarily on the basis of morphological and cultural characteristics. Five representative single-hypha isolates were characterized. On potato dextrose agar, they formed colonies with a slight petaloid pattern. Cardinal temperatures for mycelium growth were 2°C, minimum; 25°C, optimum; and 30 to 35°C, maximum. Hyphal swellings were abundant in aqueous culture. Sporangia were obpyriform, persistent, nonpapillate, and proliferous (2). All isolates were the A1 mating type and formed oogonia, amphigynous antheridia, and oospores in dual cultures with reference isolates of the A2 mating type of P. cryptogea and P. drechsleri. Identification was confirmed by electrophoresis of mycelium proteins on a polyacrylamide slab gel (1). Electrophoretic patterns of total soluble proteins from the sage isolates were identical or very similar to those from 10 reference isolates of P. cryptogea from various hosts, including isolate IMI 180615 (ex-type isolate). Conversely, the electrophoretic pattern of the isolates of P. cryptogea from sage was clearly distinct from those from reference isolates of other species included in Waterhouse's taxonomic group VI. Esterase (EC 3.1.1.2.) zymograms of the sage isolates corresponded to those of isolates of P. cryptogea included in electrophoretic group 2 (1). The pathogenicity of a representative isolate of P. cryptogea from sage was tested in the greenhouse using 4-month-old plants of Mexican bush sage. Inoculum was produced on a mixture of vermiculite and autoclaved oat seeds (4) and mixed with steam-sterilized sandy loam soil at a concentration of 4% (vol/vol). Plants were transplanted in pots (12 cm diameter) filled with infested soil; control plants were grown in pots containing noninfested soil. After transplanting, all pots were placed in shallow trays filled with water for 24 h to saturate the soil. All plants grown in infested soil showed extensive root necrosis and dieback ≈30 days after transplanting, and P. cryptogea was reisolated from roots of symptomatic plants. Control plants did not develop symptoms. Root and crown rot of sage caused by P. cryptogea has been reported previously in California (3). To our knowledge, this is the first report of P. cryptogea on sage in Italy. Root rot caused by P. cryptogea may be a potential problem for commercial cultivation of sage as no serious disease of this plant has been reported in Italy so far. References: (1) S. O. Cacciola et al. EPPO Bull. 20:47, 1990. (2) D. C Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. American Phytopathological Society, St. Paul MN. 1996. (3) S. T. Koike et al. Plant Dis. 81:959, 1997. (4) E. Sánchez-Hernández et al. Plant Dis. 85:411, 2001.


2021 ◽  
Author(s):  
Matteo Garbelotto ◽  
Susan J. Frankel

Abstract Phytophthora ramorum is considered an invasive species due to its ability to spread, persist, and reproduce in new environments. Its rapid life-cycle, propensity to reproduce asexually and splash dispersal via windblown rain, plus its ability to survive through harsh climatic conditions, are elements favouring this species' potential invasiveness. Spread potential in forests has been elucidated by several studies in California and Oregon employing population genetics approaches. Results have consistently shown that scale of spread of naturalized endemic pathogen populations in natural ecosystems is limited to a few hundred metres and, occasionally, during extremely wet years, spread may reach a few (3-5) km (Mascheretti et al., 2008; Mascheretti et al., 2009; Eyre et al., 2013). Spread events at scales larger than those reported above appear to be associated either with the movement of infected plant parts, normally from large wild infestations, or with the introduction of infected plants, normally from infested ornamental nursery plant stock (Croucher et al., 2013). Spread scales from the hundreds of metres to the few kilometres apply to pathways that involve only foliar hosts, in particular California bay laurels and tanoaks, and are clearly positively correlated with rainfall (Eyre et al., 2013). However, spread from foliar hosts such as California bay laurels, tanoaks and ornamental rhododendrons to stem hosts such as oaks and tanoaks occur at the much lower scale of 10 to 20 metres and are strongly associated with the occurrence of episodic and above average rainy years (Cobb et al., 2012; Garbelotto et al., 2017). Given the limited spatial scale of dispersal of P. ramorum, its spread is strongly driven by structure and composition of individual forest stands and is projected to increase as the density of infectious foliar hosts increases (Cobb et al., 2010; Meentemeyer et al., 2015). Monocultures of Japanese larch in the UK, stands with high proportion of tanoaks in Oregon and California, and oak woodlands with an abundance of California bay laurels have all been the hardest hit systems. Presence of contiguous forests (Condeso and Meentemeyer, 2007), genetics of host populations (Dodd et al., 2005; Hayden et al., 2011), microclimate (Anacker et al., 2008; DiLeo et al., 2014) and climate (Meentemeyer et al., 2004; Venette and Cohen, 2006; Ireland et al., 2013; Meentemeyer et al., 2015) are all know to drive the spread in ecosystems invaded by P. ramorum. In spite of the theoretical tolerance of the pathogen to both high and low temperatures, models validated by extensive field sampling in regions infested by NA1 populations indicate high maximum temperatures strongly limit the spread of the pathogen (Meentemeyer et al., 2015) and may even cause significant reversion from positive to negative infection status in foliar hosts (Lione et al., 2017). High temperatures have also been shown to make water populations of the pathogen not viable (Eyre et al., 2015). In the lab, exposure of Petri dishes to 55°C for 1 hour, to 45°C for 4 hours or to 40°C for 24 hours has blocked pathogen growth (Swain et al., 2006), but survival of the pathogen has been reported up to 1 week at 55°C for infected California bay laurel leaves (Harnik et al., 2004), and in other trials the pathogen has been shown to survive in pant tissue between 40°C (2 days) and -20°C (4 days) (Tooley et al., 2008). Finally, the pathogen's broad host range on popular, nursery grown, ornamental plants, and the non-lethal, nondescript nature of the disease on most of the foliar hosts allows for long-term dispersal.


Sign in / Sign up

Export Citation Format

Share Document