scholarly journals Leaf Anthracnose, a New Disease of Swallow-Worts Caused by Colletotrichum lineola from Russia

Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1586-1586 ◽  
Author(s):  
D. Berner ◽  
C. Cavin ◽  
Z. Mukhina ◽  
D. Kassanelly

Black swallow-wort, Vincetoxicum nigrum (L.) Moench (= Cynanchum louiseae Kartesz & Gandhi), and pale swallow-wort, V. rossicum (Kleopow) Borhidi (= Cynanchum rossicum (Kleopow) Borhidi), are invasive plants belonging to the family Apocynaceae and are the targets of biological control efforts to control their spread in the United States. In 2010, a disease on a related species, V. scandens Sommier & Levier, was observed in the Krasnodar area of Russia. Disease symptoms were many small, dark red-to-purple leaf spots, approximately 2 to 5 mm in diameter, with white centers. Leaf spots were found on the upper leaf surface. Leaf tips and margins of leaves bearing many of these spots were necrotic. Symptomatic leaves were collected and sent to the BSL-3 containment facility at the Foreign Disease-Weed Science Research Unit (FDWSRU) of the USDA, ARS in Frederick MD. Surface-disinfested symptomatic leaves were incubated at 20 to 25°C in sterile moist chambers. After several days, acervuli and brown setae were observed inside the leaf spots. Pure cultures, designated FDWSRU 10-002, were obtained by transferring spore masses with sterile glass needles onto 20% V8 juice agar. Seeds of V. scandens, collected in Russia, were placed in a freezer at –20°C for 6 weeks and then germinated in sterile petri plates on moist filter paper. The seedlings were then transplanted and grown in a 20°C greenhouse under 12 h of light. Koch's postulates were fulfilled as follows: 2-month-old plants each of V. scandens, V. nigrum, and V. rossicum were inoculated with spores from 2-week-old cultures of isolate 10-002. Plants were inoculated by spraying an aqueous suspension of 106 spores per ml onto each plant until all leaves were wet. Plants were placed in 20 to 24°C dew chambers for 18 h and then placed in a 20°C greenhouse. Two weeks later, diseased leaves with the same symptoms observed in the field were harvested from each species, and the fungus was reisolated from seven of seven inoculated V. scandens plants, one of two V. nigrum plants, and four of four V. rossicum plants. Measurements of fungus fruiting structures were taken from cultures grown on synthetic nutrient-poor agar (SNA) (1). Conidiophores were brown, septate, and branched. Conidia were one-celled, hyaline, smooth walled, ovoid to oblong, falcate, and 20.1 to 26.2 × 1.7 to 3.6 μm (mean ± s.d. = 23.5 ± 1.3 × 2.6 ± 0.4 μm). Lengths of the conidia conformed to the description of Colletotrichum lineola Corda (1), but the conidia were slightly narrower than described. To induce appressoria formation, approximately 104 conidia were placed on sterile dialysis membranes on top of SNA in petri dishes that were wrapped in foil and incubated at 24°C for 24 h. After this time, appressoria were observed with a microscope at ×400 magnification. The appressoria were dark brown, smooth walled, ellipsoidal, and 5.5 to 25.5 × 3.6 to 12.1 μm (mean ± s.d. = 13.4 ± 4.0 × 7.3 ± 2.1 μm), which conformed to the description of appressoria of C. lineola Corda (1). DNA sequences of ITS1, 5.8S, and ITS2 were submitted to GenBank (No. HQ731491), and after BLAST analysis, aligned 100% to 15 previously identified isolates of C. lineola in GenBank. Voucher specimens of the fungus have been deposited in the U.S. National Fungus Collection and were designated as BPI 881105 and BPI 881106. Host range and efficacy tests are planned to determine the suitability of C. lineola for biological control of swallow-worts in the United States. Reference: (1) U. Damm et al. Fungal Divers. 39:45, 2009.

Plant Disease ◽  
2004 ◽  
Vol 88 (12) ◽  
pp. 1382-1382 ◽  
Author(s):  
F. M. Eskandari ◽  
D. K. Berner ◽  
J. Kashefi ◽  
L. Strieth

Centaurea solstitialis L. (yellow starthistle [YST]), family Asteraceae, an invasive weed in California and the western United States is targeted for biological control. During the spring of 2004, an epidemic of dying YST plants was found near Kozani, Greece (40°22′07″N, 21°52′35″E, 634 m elevation). Rosettes of YST had small, brown leaf spots on most of the lower leaves. In many cases, these spots coalesced and resulted in necrosis of many of the leaves and death of the rosette. Along the roadside where the disease was found, >100 of the YST plants showed disease symptoms. Diseased plants were collected, air dried, and sent to the quarantine facility of the Foreign Disease-Weed Science Research Unit (FDWSRU), USDA, ARS, Fort Detrick, MD. Diseased leaves were surface disinfested and placed on moist filter paper in petri dishes. Conidiophores and conidia were observed after 48 h. The fungal isolate, DB04-011, was isolated from these diseased leaves. Pathogenicity tests were performed by spray inoculating the foliage of 20 4-week-old YST rosettes with an aqueous suspension of 1 × 106 conidia per ml. Conidia were harvested from 2-week-old cultures grown on modified potato carrot agar (MPCA). Inoculated plants were placed in an environmental chamber at 23°C with 8 h of daily light and continuous dew for 48 h. Inoculated and control plants were moved to a 20°C greenhouse bench and watered twice per day. After 7 days, leaf spots were observed first on lower leaves. After 10–12 days, all inoculated plants showed typical symptoms of the disease. No symptoms developed on control plants. The pathogen, DB04-011, was consistently isolated from symptomatic leaves of all inoculated plants. Disease symptoms were scattered, amphigenous leaf spots in circular to subcircular spots that were 0.2 to 7 mm in diameter and brownish with distinct dark green margins. Intraepidermal stromata, 14 to 77 μm in diameter and pale yellow to brown, were formed within the spots. Conidiophores that arose from the stromata were straight, subcylindrical, simple, 70 to 95 × 2.8 to 4 μm, hyaline, smooth, and continuous or septate with conidial scars that were somewhat thickened, colorless, and refractive. Primary conidia were subcylindrical, slightly obclavate or fusiform, ovoid, 21 to 49 × 5 to 7.5 μm, 0 to 5 septate, hyaline, smooth, had a relatively rounded apex, and the hilum was slightly thickened. Conidial dimensions on MPCA were 11.2 to 39.2 × 4.2 to 7 μm (average 25.5 × 5.5 μm). Koch's postulates were repeated two more times with 20 and 16 plants. On the basis of fungal morphology, the organism was identified as a Cercosporella sp., (1,2; U. Braun and N. Ale-Agha, personal communication). To our knowledge, this is the first report of this genus of fungus parasitizing YST. Results of host range tests will establish if this isolate of Cercosporella has potential as a biological control agent of YST in the United States. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 844247). Live cultures are being maintained at FDWSRU and European Biological Control Laboratoryt (EBCL), Greece. References: (1) U. Braun. A Monograph of Cercosporella, Ramularia and Allied Genera (Phytopathogenic Hyphomycetes) Vol. 1. IHW-Verlage, Eching-by-Munich, 1995. (2) U. Braun. A Monograph of Cercosporella, Ramularia and Allied Genera (Phytopathogenic Hyphomycetes) Vol. 2. IHW-Verlage, 1998.


Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 206-206
Author(s):  
T. Souissi ◽  
D. K. Berner ◽  
H. J. Dubin

Lepidium draba (L.) subsp. draba (synonym = Cardaria draba (L.) Desv.), commonly known as white-top or hoary-cress (1), family Brassicaceae, is a common weed and emerging problem in wheat in Tunisia. It is also a problematic invasive weed in the northwestern United States and a target of biological control efforts. During the summer of 2002, dying L. draba plants were found around Tunis, Tunisia. Plants had grayish white leaf spots on most of the leaves. In some cases, the leaf spots dropped out of the leaves producing “shot-holes”. In most cases, the leaf spots coalesced, and the leaves wilted and died. Diseased leaves were collected, air-dried, and sent to the quarantine facility of the Foreign Disease-Weed Science Research Unit (FDWSRU), USDA/ARS, Fort Detrick, MD. The air-dried leaves were observed microscopically, and numerous conidiophores and conidia were observed on both sides of the leaves within and around the lesions. The fungus isolated (DB03-009) conformed to the description of Cercospora bizzozeriana Saccardo & Berlese (2). Conidiophores were unbranched, pale olive-brown, 1 to 5 geniculate, and uniform in color and width. Conidia were hyaline, straight to slightly curved, multiseptate, and 57 to 171 × 3.8 to 6.7 µm (average 103 to 4.6 µm). Stems and leaves of 12 rosettes (10 to 15 cm in diameter) of 6-week-old L. draba plants were spray inoculated with an aqueous suspension of conidia (1 × 105/ml) harvested from 6- to 8-day-old cultures grown on carrot leaf decoction agar. Six of the plants and two noninoculated plants were placed in a dew chamber at 22°C in darkness and continuous dew. The other half of the plants and two noninoculated plants were placed on a greenhouse bench at approximately 25°C and covered with clear polyethylene bags. After 72 h, plants from the dew chamber were moved to a greenhouse bench, and the bagged plants were uncovered. All plants were watered twice daily. After 9 days, symptoms were observed on the plants that had been bagged but not on the plants from the dew chamber. Symptoms were identical to those observed in the field in Tunisia and included “shot holes”. No symptoms were observed on noninoculated plants. C. bizzozeriana was reisolated from the leaves of all symptomatic plants. Completion of Koch's postulates was repeated with an additional five plants. This isolate of C. bizzozeriana is a destructive pathogen on L. draba subsp. draba, and severe disease can be produced by inoculation of foliage with an aqueous suspension of conidia. This isolate is a good candidate for mycoherbicide development in Tunisia where the weed and pathogen are indigenous. However, some commercially grown Brassica species were found susceptible to this isolate, which will preclude its use as a classical biological control agent in the United States. To our knowledge, this is the first report of C. bizzozeriana on L. draba subsp. draba in Tunisia. A voucher specimen has been deposited at the U.S. National Fungus Collections (BPI 843753). Live cultures are being maintained at FDWSRU and the Institut National Agronomique de Tunisie, Tunis, Tunisia. References: (1) I. A. Al-Shehbaz and K. Mummenhoff. Novon 12:5, 2002. (2) C. Chupp. A Monograph of the Fungus Genus Cercospora. C. Chupp, Ithaca, New York, 1953.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 110-110 ◽  
Author(s):  
T. Kolomiets ◽  
Z. Mukhina ◽  
T. Matveeva ◽  
D. Bogomaz ◽  
D. K. Berner ◽  
...  

Salsola tragus L. (Russian thistle) is a problematic invasive weed in the western United States and a target of biological control efforts. In September of 2007, dying S. tragus plants were found along the Azov Sea at Chushka, Russia. Dying plants had irregular, necrotic, canker-like lesions near the base of the stems and most stems showed girdling and cracking. Stem lesions were dark brown and contained brown pycnidia within and extending along lesion-free sections of the stems and basal portions of leaves. Diseased stems were cut into 3- to 5-mm pieces and disinfested in 70% ethyl alcohol. After drying, stem pieces were placed into petri dishes on the surface of potato glucose agar. Numerous, dark, immersed erumpent pycnidia with a single ostiole were observed in all lesions after 2 to 3 days. Axenic cultures were sent to the Foreign Disease-Weed Science Research Unit, USDA, ARS, Ft. Detrick, MD for testing in quarantine. Conidiophores were simple, cylindrical, and 5 to 25 × 2 μm (mean 12 × 2 μm). Alpha conidia were biguttulate, one-celled, hyaline, nonseptate, ovoid, and 6.3 to 11.5 × 1.3 to 2.9 μm (mean 8.8 × 2.0 μm). Beta conidia were one-celled, filiform, hamate, hyaline, and 11.1 to 24.9 × 0.3 to 2.5 μm (mean 17.7 × 1.2 μm). The isolate was morphologically identified as a species of Phomopsis, the conidial state of Diaporthe (1). The teleomorph was not observed. A comparison with available sequences in GenBank using BLAST found 528 of 529 identities with the internal transcribed spacer (ITS) sequence of an authentic and vouchered Diaporthe eres Nitschke (GenBank DQ491514; BPI 748435; CBS 109767). Morphology is consistent with that of Phomopsis oblonga (Desm.) Traverso, the anamorph of D. eres (2). Healthy stems and leaves of 10 30-day-old plants of S. tragus were spray inoculated with an aqueous suspension of conidia (1.0 × 106 alpha conidia/ml plus 0.1% v/v polysorbate 20) harvested from 14-day-old cultures grown on 20% V8 juice agar. Another 10 control plants were sprayed with water and surfactant without conidia. Plants were placed in an environmental chamber at 100% humidity (rh) for 16 h with no lighting at 25°C. After approximately 24 h, plants were transferred to a greenhouse at 20 to 25°C, 30 to 50% rh, and natural light. Stem lesions developed on three inoculated plants after 14 days and another three plants after 21 days. After 70 days, all inoculated plants were diseased, four were dead, and three had more than 75% diseased tissue. No symptoms occurred on control plants. The Phomopsis state was recovered from all diseased plants. This isolate of D. eres is a potential biological control agent of S. tragus in the United States. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 878717). Nucleotide sequences for the ribosomal ITS regions (ITS 1 and 2) were deposited in GenBank (Accession No. EU805539). To our knowledge, this is the first report of stem canker on S. tragus caused by D. eres. References: (1) B. C. Sutton. Page 569 in: The Coelomycetes. CMI, Kew, Surrey, UK, 1980. (2) L. E. Wehmeyer. The Genus Diaporthe Nitschke and its Segregates. University of Michigan Press, Ann Arbor, 1933.


Plant Disease ◽  
2008 ◽  
Vol 92 (2) ◽  
pp. 316-316
Author(s):  
Z. M. Mukhina ◽  
D. Kassanelly ◽  
D. K. Berner ◽  
H. J. Dubin

Hoary cress (Lepidium draba (L.) subsp. draba (synonym = Cardaria draba (L.) Desv.) (1), family Brassicaceae, is a common weed in Russia but it is an aggressive invasive weed in the northwestern United States. In the summer of 2006, dying hoary cress plants were found near Kugoyeyskoye in the Krylovskoy area of the Krasnodar Region of Russia. Plants had grayish white leaf spots on most of the leaves. In some cases, the diseased leaf spots dropped out of the leaves producing shot-holes. In most cases, the leaf spots coalesced and the leaves wilted and died. Diseased leaves were collected, air dried, and sent to the quarantine facility of the Foreign Disease-Weed Science Research Unit (FDWSRU), USDA/ARS, Fort Detrick, MD. The air-dried leaves were observed microscopically, and numerous conidiophores and conidia were observed on both sides of leaves within and around the lesions. The fungus isolated (DB06-018) conformed to the description of Cercospora bizzozeriana Saccardo & Berlese (2). Conidiophores were 1 to 5 geniculate, unbranched, pale olive-brown, and uniform in color and width (4 μm). Conidia were multiseptate, hyaline, cylindric, straight to slightly curved, and measured 57 to 171 μm (average 103) long × 3.8 to 6.7 μm (average 4.6) wide. Leaves of rosettes (10 to 15 cm in diameter) of four hoary cress plants were spray inoculated with an aqueous suspension of conidia (1 × 105/ml) and mycelia harvested from 6- to 8-day-old cultures grown on V8 medium. Inoculated plants and two noninoculated plants were placed in a dew chamber at 20°C in darkness and continuous dew. After 96 h, plants were moved from the dew chamber to a greenhouse bench. All plants were watered twice daily. After 12 days, symptoms were observed on all inoculated plants. Symptoms were identical to those observed in the field in Russia. No symptoms were observed on noninoculated plants. C. bizzozeriana was reisolated from the leaves of all symptomatic plants. Nucleotide sequences were obtained for the internal transcribed spacer regions ITS1 and ITS2 and the 5.8S ribosomal RNA gene (GenBank Accession No. EU031780) and aligned with the same sequences obtained from another C. bizzozeriana isolate (GenBank Accession No. DQ370428) collected in Tunisia. There was 100% alignment of the two sequences with no gaps. Both isolates of C. bizzozeriana are destructive pathogens on hoary cress and locally severe epidemics have been observed in both Russia and Tunisia (4). This fungus has also been reported in North America (3) and has the potential as a biological control agent where the weed is a problem. To our knowledge, this is the first report of C. bizzozeriana on L. draba subsp. draba in Russia. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 878175). Live cultures are being maintained at FDWSRU. References: (1) I. A. Al-Shehbaz and K. Mummenhoff. Novon 12:5, 2002. (2) C. Chupp. A Monograph of the Fungus Genus Cercospora. C. Chupp, Ithaca, New York, 1953. (3) I. L. Conners. Res. Bra. Can. Dep. Agric. 1251:1, 1967. (4) T. Souissi et al. Plant Dis. 89:206, 2005.


Plant Disease ◽  
2006 ◽  
Vol 90 (5) ◽  
pp. 681-681 ◽  
Author(s):  
D. K. Berner ◽  
M. B. McMahon ◽  
J. Kashefi ◽  
E. Erbe

Italian thistle (Carduus pycnocephalus L.), family Asteraceae, is a common weed in Greece. It is also a problematic invasive weed in the western United States and a target of biological control efforts. In May 2005, smutted capitula of Italian thistle were found in an abandoned field in Halkiades, Greece. A total of 38 smutted plants, representing approximately 20% of those plants present, were found in a portion of the field that was lightly infested with Italian thistle. In most cases, capitula of all diseased flowers were smutted. In one or two cases, capitula on some branches of the plants were smutted, whereas capitula on other branches were healthy. Diseased capitula were noticeably more globose than healthy ovoid capitula, and diseased capitula did not open completely. When diseased capitula were split open, the ovaries in all florets within the capitula were filled with powdery masses of smut teliospores. Diseased capitula were collected, air dried, and sent to the quarantine facility of the Foreign Disease-Weed Science Research Unit (FDWSRU), USDA/ARS, Fort Detrick, MD. Teliospores within the capitula were extracted and observed microscopically. Teliospores of isolate DB05-014 were relatively uniform in shape and size, globose, 12.0 to 17.3 × 12.3 to 18.0 μm (mean 14.5 × 15.1 μm), violet tinted pale to medium yellowish-brown; wall reticulate appearing as coarse, radiate wings on the spore margin, 5 to 7 polyangular meshes per spore diameter, muri, 0.7 to 2.0 μm high in optical median view appearing as gradually narrowing blunt spines, 0.5 to 1 μm wide at their basis; in scanning electron microscopy (SEM), the meshes were subpolygonal, wall and interspaces were finely verruculose. Teliospores were more globose and slightly smaller than the description of Microbotryum cardui (A. A. Fischer Waldh.) Vánky (2), but the mean sizes were within the described range. When compared with teliospores of M. cardui on C. acanthoides, the numbers of polyangular meshes per spore diameter were within the range of the description using SEM, but the muri were about one-half of the height of those described. Nucleotide sequences for the internal transcribed spacers (ITS 1 and 2) and 5.8S ribosomal region (GenBank Accession No. AY280460) were aligned with sequences of other smut fungi using the BLAST algorithm of the National Center for Biotechnology Information. The closest alignment of DB05-014 was with M. scorzonerae (590 of 627 bp identities or 94% with 2% gaps). No sequences of M. cardui were available for comparison, but only M. cardui has been reported on Carduus spp. (1,2). Another smut reported on a Carduus sp. is Thecaphora trailii (1). DB05-014 is a likely variant of M. cardui from a previously unknown host. Italian thistle is an annual plant that reproduces solely by seeds (achenes). Because of the lack of seed production on smutted plants and the systemic nature of the disease, this fungus has great potential as a biological control agent for Italian thistle in the United States. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 871812). To our knowledge this is the first report of a Microbotryum sp. parasitizing C. pycnocephalus. References: (1) K. Vánky. European Smut Fungi. Gustav Fischer Verlag, Stuttgart, Germany, 1994. (2) K. Vánky and D. Berner. Mycotaxon 85:307, 2003.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 146-146
Author(s):  
W. L. Bruckart ◽  
F. M. Eskandari ◽  
E. M. Coombs ◽  
A. Y. Rossman ◽  
M. E. Palm

Fallopia japonica (Houtt.) Ronse Decr. (= Polygonum cuspidatum Siebold & Zucc.; Japanese knotweed, JKW) is an invasive perennial forb in the Polygonaceae. It has been identified as a target for biological control in many parts of the world, including the United States. Several potted JKW plants in an outdoor study at the Oregon Department of Agriculture, Salem (44.93° N, 122.99° W) developed leaf spots. Samples collected on August 20, 2007, were sent to the FDWSRU for identification of the disease. The necrotic leaf spots were brown and large, 1 to 3 cm in diameter, and in some cases occupying 30% of the leaf area. Both hemispherical and discoid conidiomata with gloeoid spore masses (3) developed in necrotic areas of all leaves placed in moist chambers. Discoid conidiomata had dark, pedicellate bases subtending a fimbriate disc on which pale brown to brown gloeoid conidial masses were produced. Hemispherical conidiomata were black, circular, sessile, and somewhat flattened, within which similar, gloeoid conidial masses were produced. Conidia from each type of conidioma were unicellular, cylindrical to fusiform, hyaline, and 4.5 to 7.2 × 0.9 to 1.8 μm (mean 5.7 × 1.33). Artificial inoculation of 15 plants was made on two occasions with a suspension of 106 conidia per ml, followed by two 16-hr dew periods at 25°C that were separated by an 8-hr “day;” a similar set of 15 non-inoculated plants served as controls each time. Symptoms similar to those in the original sample developed within 2 months after inoculation. The fungus was easily reisolated, and conidia from each type of conidioma produced similar growth on artificial media and similar disease after inoculation. The characteristics of conidial size and distinctly different conidiomata are diagnostic of Pilidium concavum (Desm.) Höhn (3,4). A sequence of the ITS1-5.8S-ITS2 region DNA, extracted using a DNeasy Plant Mini Kit (QIAGEN), was found identical to that of P. concavum from Rosa sp. (BPI 1107275; GenBank Accession No. AY487094), using BLAST. This isolate, FDWSRU 07-116, has been deposited in the US National Fungus Collection (BPI 883546) and at the Centraalbureau voor Schimmelcultures (CBS 132725). Sequence data have been deposited in GenBank (JQ790789). To our knowledge, this is the first report of P. concavum causing disease on a member of the Polygonaceae in North America (1), a disease clearly different from a Japanese Mycosphaerella sp. under consideration for biological control of JKW in the United Kingdom (2). References: (1) D. F. Farr, and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 15, 2012. (2) D. Kurose et al. MycoSci. 50:179, 2009. (3) M. E. Palm, Mycologia 83:787, 1991. (4) A. Y. Rossman, et al. Mycol. Progr. 3:275, 2004.


Plant Disease ◽  
2003 ◽  
Vol 87 (12) ◽  
pp. 1540-1540 ◽  
Author(s):  
B. Tunali ◽  
F. M. Eskandari ◽  
D. K. Berner ◽  
D. F. Farr ◽  
L. A. Castlebury

Acroptilon repens (L.) DC. (Russian knapweed, synonym Centaurea repens L., family Asteraceae) is becoming a noxious weed in wheat fields in Turkey. Because it is also an invasive weed in the northwestern United States, A. repens is a target of biological control efforts. In the summer of 2002, approximately 20 dying A. repens plants were found on a roadside near Cankiri, Turkey (40°21′41″N, 33°31′8″E, elevation 699 m). No healthy plants were found in the immediate area. Dying plants had irregular, charcoal-colored, necrotic lesions at the leaf tips and margins, and frequently, whole leaves and plants were necrotic. Symptomatic leaves were air-dried and sent to the Foreign Disease-Weed Science Research Unit, USDA/ARS, Fort Detrick, MD. There, diseased leaves were surface-disinfested and placed on moist, filter paper in petri dishes. Pycnidia producing one-celled hyaline conidia were observed after 4 to 5 days. Internal transcribed spacer regions 1 and 2, including the 5.8S ribosomal DNA, were sequenced for isolate 02-059 (GenBank Accession No. AY367351). This sequence was identical to sequences in GenBank from six well-characterized strains of Phoma exigua Desmaz (1). Morphology was also consistent with P. exigua (2) with the exception that material grown on alfalfa twigs produced pycnidia with 1 to 4 ostioles with necks as much as 80 μm long. Typically, pycnidia of P. exigua produced on agar have 1 to 2 ostioles that lack necks. Conidial dimensions on alfalfa were 4.1 to 7.6 × 1.7 to 3.2 μm (average 5.5 × 2.4 μm). Images of the fungus are located at http://nt.ars-grin.gov under the section ‘Fungi Online’. Stems and leaves of 20 3-week-old plants were spray inoculated with an aqueous suspension (1 × 107 conidia per ml) of conidia harvested from 25-day-old cultures grown on acidified potato dextrose agar, and placed in an environmental chamber at 25°C with constant light and continuous dew for 3 days. Plants were then moved to a greenhouse bench and watered twice daily. After 6 days, symptoms were observed on all plants. Once symptoms had progressed to the midveins of the leaves, the disease progressed rapidly on the plants, indicating the possibility of systemic infection or systemic movement of toxins. Phoma exigua was reisolated from the stems, petioles, and leaves of all inoculated plants. In a separate test, 12 plants were inoculated as described above, and 8 additional plants were sprayed with water only. After inoculation, plants were handled as described above. The first lesions developed after 3 days on all except the youngest leaves of inoculated plants. After 10 days, three inoculated plants were dead, and all other inoculated plants had large necrotic lesions. No symptoms developed on control plants. This isolate of Phoma exigua is a destructive pathogen on A. repens, and severe disease can be produced by inoculation of foliage with an aqueous suspension of conidia. These characteristics make this isolate of P. exigua a potential candidate for biological control of this weed in Turkey and the United States. To our knowledge, this is the first report of P. exigua on A. repens in Turkey. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 843350). References: (1) E. C. A. Abeln et al. Mycol. Res. 106:419, 2002. (2) H. A. Van der Aa et al. Persoonia 17:435, 2000.


Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 918-918
Author(s):  
I. Erper ◽  
B. Tunali ◽  
D. K. Berner

Horseweed (Conyza canadensis (L).Cronq., Asteraceae) is an invasive exotic weed in Turkey and a problematic native weed in the United States where glyphosate-resistant populations of the weed have developed (2). These characteristics make horseweed a target for biological control efforts. In September 2009, small, brown leaf spots were observed on leaves of C. canadensis in Taflan, Turkey (41°25.398′N, 36°08.352′E). Globose, dark-walled pycnidia were also observed in brown spots on leaves. Diseased tissue was surface disinfested and placed on moist filter paper in petri plates. A fungus designated 09-Y-TR1 was isolated from the diseased leaves. Single-spore isolations were grown on potato dextrose agar (PDA). Cultures on PDA formed dark green-to-black colonies. Pycnidia matured after 3 to 4 weeks when plates were incubated at 23°C with a 12-h photoperiod (black light and cool white fluorescent light). Pycnidia were separate, immersed, and dark brown with a single apical ostiole. Matured conidia were one to three septate, filiform, straight to slightly curved, rounded at the apex, smooth walled, hyaline, and 22 to 40 × 1.4 to 2.5 μm. Morphology was consistent with Septoria erigerontis Peck (3). Comparison of the internal transcribed spacer (ITS) 1 and 2 sequence with available sequences of vouchered S. erigerontis specimens (GenBank EF535638.1, AY489273.1; KACC 42355, CBS 109094) showed 447 of 450 and 446 of 450 identities, respectively. Nucleotide sequences for the ribosomal ITS regions (ITS 1 and 2, including 5.8S rDNA) were deposited in GenBank (GU952666). For pathogenicity tests conidia were harvested from 3-week-old cultures grown on PDA, by brushing the surface of the colonies with a small paint brush, suspended in sterile distilled water, and filtered through cheese cloth. Conidia were then diluted in sterile distilled water plus 0.1% polysorbate 20 to a concentration of 5 × 106 conidia/ml. Stems and leaves of seven 5-month-old seedlings were spray inoculated with 10 ml of this aqueous suspension per plant. Inoculated plants and three noninoculated plants were placed in a dew chamber at 23°C in darkness and continuous dew, and after 48 h, plants were moved to a greenhouse bench. Symptoms were observed 2 days after inoculation. Disease severity was evaluated 2 weeks after inoculation by a rating system with a scale of 0 to 6 based on percentage of plant tissue necrosis, in which 0 = no symptoms, 1 = 1 to 5%, 2 = 6 to 25%, 3 = 26 to 75%, 4 = 76 to 95%, 5 = >95%, and 6 = dead plant. The average disease rating on inoculated plants was 3.55. No disease was observed on noninoculated plants. S. erigerontis was reisolated from all inoculated plants. To our knowledge, this is the first report of leaf spot on horseweed caused by S. erigerontis in Turkey where the fungus may have potential as a classical biological control agent. S. erigerontis has also been reported on C. canadensis in Korea and Portugal (1). In the United States, S. erigerontis has been reported on horseweed in several states (1) and these isolates may have potential as biological control agents of horseweed, particularly glyphosate-resistant horseweed, in the United States. References: (1) D. F. Farr et al. Fungal Databases. Systematic Mycology and Microbiology Laboratory, Online publication. ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , March 2010. (2) I. Heap. www.weedscience.org , 2006. (3) M. J. Priest. Fungi of Australia: Septoria. ABRS/CSIRO Publishing. Melbourne, 2006.


2021 ◽  
pp. 1-16
Author(s):  
Hajer Al-Faham

How does surveillance shape political science research in the United States? In comparative and international politics, there is a rich literature concerning the conduct of research amid conditions of conflict and state repression. As this literature locates “the field” in distant contexts “over there,” the United States continues to be saturated with various forms of state control. What this portends for American politics research has thus far been examined by a limited selection of scholars. Expanding on their insights, I situate “the field” in the United States and examine surveillance of American Muslims, an understudied case of racialized state control. Drawing on qualitative data from a case study of sixty-nine interviews with Arab and Black American Muslims, I argue that surveillance operated as a two-stage political mechanism that mapped onto research methodologically and substantively. In the first stage, surveillance reconfigured the researcher-researchee dynamic, hindered recruitment and access, and limited data-collection. In the second stage, surveillance colored the self-perceptions, political attitudes, and civic engagement of respondents, thereby indicating a political socialization unfolding among Muslims. The implications of this study suggest that researchers can mitigate against some, but not all, of the challenges presented by surveillance and concomitant forms of state control.


Sign in / Sign up

Export Citation Format

Share Document