scholarly journals First Report of Downy Mildew Caused by Hyaloperonospora parasitica on Matthiola incana in Italy

Plant Disease ◽  
2020 ◽  
pp. PDIS-04-20-0766
Author(s):  
D. Bertetti ◽  
S. Matić ◽  
A. Garibaldi ◽  
G. Bozzano ◽  
M. L. Gullino
Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1057-1057
Author(s):  
B. Amsden ◽  
K. Kwiatkowski ◽  
E. Dixon ◽  
T. Thompson ◽  
M. Williams ◽  
...  

2009 ◽  
Vol 10 (1) ◽  
pp. 40 ◽  
Author(s):  
Melodie L. Putnam ◽  
Maryna Serdani ◽  
Daryl Ehrensing ◽  
Marc Curtis

Downy mildew on camelina previously has been reported in Minnesota, where it was identified as Peronospora camelinae (now Hyaloperonospora camelinae), although no supporting evidence was given. In Montana, a downy mildew on camelina was identified as P. parasitica (now Hyaloperonospora parasitica). To our knowledge, this report marks the first time H. camelinae has been confirmed in the western USA. Accepted for publication 23 July 2009. Published 10 September 2009.


Plant Disease ◽  
2017 ◽  
Vol 101 (11) ◽  
pp. 1958-1958
Author(s):  
Y. J. Choi ◽  
S. E. Cho ◽  
H. D. Shin

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 696-696 ◽  
Author(s):  
J. A. Crouch ◽  
M. P. Ko ◽  
J. M. McKemy

Downy mildew of impatiens (Impatiens walleriana Hook.f.) was first reported from the continental United States in 2004. In 2011 to 2012, severe and widespread outbreaks were documented across the United States mainland, resulting in considerable economic losses. On May 5, 2013, downy mildew disease symptoms were observed from I. walleriana ‘Super Elfin’ at a retail nursery in Mililani, on the Hawai'ian island of Oahu. Throughout May and June 2013, additional sightings of the disease were documented from the islands of Oahu, Kauai, Maui, and Hawai'i from nurseries, home gardens, and botanical park and landscape plantings. Symptoms of infected plants initially showed downward leaf curl, followed by a stippled chlorotic appearance on the adaxial leaf surfaces. Abaxial leaf surfaces were covered with a layer of white mycelia. Affected plants exhibited defoliation, flower drop, and stem rot as the disease progressed. Based on morphological and molecular data, the organism was identified as Plasmopara obducens (J. Schröt.) J. Schröt. Microscopic observation disclosed coenocytic mycelium and hyaline, thin-walled, tree-like (monopodial branches), straight, 94.0 to 300.0 × 3.2 to 10.8 μm sporangiophores. Ovoid, hyaline sporangia measuring 11.0 to 14.6 × 12.2 to 16.2 (average 13.2 × 14.7) μm were borne on sterigma tips of rigid branchlets (8.0 to 15.0 μm) at right angle to the main axis of the sporangiophores (1,3). Molecular identification of the pathogen was conducted by removing hyphae from the surface of three heavily infected leaves using sterile tweezers, then extracting DNA using the QIAGEN Plant DNA kit (QIAGEN, Gaithersburg, MD). The nuclear rDNA internal transcribed spacer was sequenced from each of the three samples bidirectionally from Illustra EXOStar (GE Healthcare, Piscataway, NJ) purified amplicon generated from primers ITS1-O and LR-0R (4). Resultant sequences (GenBank KF366378 to 80) shared 99 to 100% nucleotide identity with P. obducens accession DQ665666 (4). A voucher specimen (BPI892676) was deposited in the U.S. National Fungus Collections, Beltsville, MD. Pathogenicity tests were performed by spraying 6-week-old impatiens plants (I. walleriana var. Super Elfin) grown singly in 4-inch pots with a suspension of 1 × 104 P. obducens sporangia/ml until runoff using a handheld atomizer. Control plants were sprayed with distilled water. The plants were kept in high humidity by covering with black plastic bags for 48 h at 20°C, and then maintained in the greenhouse (night/day temperature of 20/24°C). The first symptoms (downward curling and chlorotic stippling of leaves) and sporulation of the pathogen on under-leaf surfaces of the inoculated plants appeared at 10 days and 21 days after inoculation, respectively. Control plants remained healthy. Morphological features and measurements matched those of the original inoculum, thus fulfilling Koch's postulates. To our knowledge, this is the first report of downy mildew on I. walleriana in Hawai'i (2). The disease appears to be widespread throughout the islands and is likely to cause considerable losses in Hawai'ian landscapes and production settings. References: (1) O. Constantinescu. Mycologia 83:473, 1991. (2) D. F. Farr and A. Y. Rossman. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ July 16, 2013. (3) P. A. Saccardo. Syllogue Fungorum 7:242, 1888. (4) M. Thines. Fungal Genet Biol 44:199, 2007.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 111-111 ◽  
Author(s):  
T. Amein ◽  
C. H. B. Olsson ◽  
M. Wikström ◽  
R Findus ◽  
D AB ◽  
...  

During September 2004, downy mildew of parsley caused by a species of Plasmopara was observed in an experimental field of parsley (Petroselinum crispum subsp. crispum L. cv. Gigante d'Italia/Hilmar) in Borgeby in southern Sweden. The summer of 2004 was exceptionally wet and humid. Disease became widespread throughout the field in just a few days. Local growers reported that symptoms consistent with downy mildew had appeared in their parsley fields every year since 2001. Plasmopara, under P. nivea, has been reported on parsley in Europe since the middle of the 19th century (4). In recent years, this disease has caused severe damage to parsley grown in several European countries, e.g., France, Germany, Switzerland, and Belgium (1,3). The first symptoms appeared as faint chlorotic spots on the upper surfaces of the leaves. On the corresponding lower surfaces, mycelium and sporangiophores grew profusely and developed a white mat that in part turned dark gray. Eventually, the leaves and stalks became necrotic and died. The sporangiophores were monopodially branched, 248.4 ± 13.36 μm long (n = 17), each branch ending in 2 to 5 ultimate branchlets tapered toward the tip. The trunk diameter measured 7.0 ± 0.77 μm (n = 9) above the basal part and 6.1 ± 0.81 μm just below the first branch. The sporangia were broadly ellipsoidal to ellipsoidal, hyaline, 22.5 ± 0.73 μm long and 16.6 ± 0.48 μm wide (n μ 40). They were mostly nonpapillate when young, although exit pores 4.8 ± 0.32 μm (n = 10) were visible. Mature sporangia exhibited a dehiscence apparatus and a plug in the exit pore. On the basis of the characteristics above, the pathogen was identified as P. petroselini (= P. nivea pro parte [2]). Independent verification of the identity was done by O. Constantinescu at the Botanical Museum, Uppsala, Sweden. A voucher specimen was deposited at the Herbarium UPS, in Uppsala under the number UPS F-118873. To our knowledge, this is the first report of P. petroselini on parsley in Sweden. References: (1) E. Bèliard and J. Thibault. Phytoma 554:2, 2002. (2) O. Constantinescu. Taxon 54:813, 2005. (3) C. Crepel and S. Inghelbrecht. Plant Dis. 87:1266, 2003. (4) A. de Bary, Ann. Sci. Nat. Bot., Sér. 4, 20:5, 1863.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1579-1579 ◽  
Author(s):  
I. Šafránková ◽  
L. Holková

Sweet basil (Ocimum basilicum L.) is an aromatic plant that is cultivated as a pot plant in greenhouses or in fields in the Czech Republic. The plants are intended for direct consumption or for drying. In April of 2012, the first large chlorotic from the middle necrotic spots occurred gradually on leaves of pot plants O. basilicum cv. Genovese in greenhouses in Central Bohemia. The characteristic gray to brown furry growth of downy mildew appeared on abaxial surfaces of leaves in the place of chlorotic spots within 3 to 4 days. The infested leaves fell off in the late stages of pathogenesis. The infestation gradually manifested itself in ever-younger plants and in July, cotyledons and possibly the first true leaves were already heavily infected and damaged and these plants rapidly died. The plant damage reached 80 to 100%, so it was necessary to stop growing the plants in the greenhouse at the end of July. The causal agent was isolated and identified as Peronospora belbahrii Thines by means of morphological and molecular characters (2,3). Conidiophores were hyaline, straight, monopodial, 280 to 460 μm, branched three to five times, ended with two slightly curved branchlets with a single conidia on each branchled tip. The longer branchlets measured 13 to 24 μm (average 18.2 μm), the shorter one 4 to 15 μm (average 9.7 μm). Conidia were rounded or slightly ovoid, from brownish to dark brownish, measured 22 to 31 × 20 to 28 μm (length/width ratio 1.2). A pathogen-specific sequence was detected with the help of the pathogen ITS rDNA specific primers in symptomatic leaves (1). DNA from plant tissues was isolated using the DNeasy plant Mini Kit (Qiagen, Germany) following the standard protocol. PCR was performed using KAPA2G Robust HotStar kit (Kapa Biosystems, United States) according to the conditions recommended in Belbahri et al. (1). The specific products were visualized by electrophoresis through 1.5% agarose gels. Leaves of 20-day-old potted plants O. basilicum ‘Genovese’ were inoculated by spraying with 5 × 105 conidia/ml of the pathogen. Each pot contained 10 plants. Sterilized distilled water was applied to control plants. Plants were covered with polyethylene bags during the entire incubation period to maintain high humidity, and kept at a temperature of 22 to 24°C. Typical disease symptoms appeared on leaves 5 to 9 days after inoculation. Control plants were symptomless. P. belbahrii was re-isolated from the lesions of inoculated plants, thus fulfilling Koch's postulates. Downy mildew on sweet basil was reported in countries in Africa, Europe, and South and North America (4). To our knowledge, this is the first report of downy mildew on sweet basil in the Czech Republic. References: (1) L. Belbahri et al. Mycol. Res. 109:1276, 2005. (2) Y.-J. Choi et al. Mycol. Res. 113:1340, 2009. (3) M. Thines et al. Mycol. Res. 113:532, 2009. (4) C. A. Wyenandt et al. HortScience 45:1416, 2010.


Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 909-909 ◽  
Author(s):  
S. N. Wegulo ◽  
S. T. Koike ◽  
M. Vilchez ◽  
P. Santos

During February 2004, diseased double impatiens (Impatiens walleriana) plants were received from a commercial grower in southern California. The upper surfaces of symptomatic leaves were pale yellow with no distinct lesions. Diseased leaves later wilted, and severely affected leaves abscised from the stem. At the nursery, only double impatiens plants in the Fiesta series were infected, and some cultivars were more heavily infected than others. Disease incidence in cv. Sparkler Hot pink was nearly 100%. The interior of infected leaves was colonized by coenocytic mycelium. A conspicuous white growth was observed only on the underside of leaves. Sporangiophores were hyaline, thin walled, emergent from stomata, and had slightly swollen bases. Sporangiophore branching was distinctly monopodial. Smaller sporangiophore branches were arranged at right angles to the supporting branches, and tips of branches measured 8 to 14 μm long. Sporangia were ovoid and hyaline with a single pore on the distal ends. Distal ends of sporangia were predominantly flat but occasionally had a slight papilla. Short pedicels were present on the attached ends. Sporangia measured 19.4 to 22.2 (-25.0) μm × 13.9 to 16.7 (-19.4) μm. Oospores were not observed in leaf tissue. On the basis of symptoms and morphology of the organism, the pathogen was identified as Plasmopara obducens J. Schröt. Pathogenicity tests were done on double type cvs. Fiesta, Tioga Red, and Tioga Cherry Red and on single type cvs. Cajun Watermelon and Accent Lilac. Plants were spray inoculated with sporangiospore suspensions (1 × 104 sporangiospores per milliliter), incubated for 24 h in a dew chamber (18 to 20°C), and then maintained in a greenhouse (22 to 24°C). Symptoms and signs of downy mildew developed after 12 days only on inoculated cv. Fiesta plants, and the pathogen morphology matched that of the originally observed pathogen. Nontreated control plants did not develop downy mildew. To our knowledge, this is the first report of downy mildew on impatiens in California. P. obducens is one of two causal agents of downy mildew of impatiens (2,4). The other pathogen, Bremiella sphaerosperma, has dichotomous sporangiophore branching and causes lesions with well-defined margins (2,4). In the United States, the disease has been recorded in the eastern and northeastern states and in Indiana, Minnesota, Mississippi, Montana, and Wisconsin (3). In Canada, the disease has been recorded in Manitoba and Quebec (1). References: (1) I. L. Conners. An Annotated Index of Plant Diseases in Canada and Fungi Recorded on Plants in Alaska, Canada, and Greenland. Research Branch, Canada Department of Agriculture, Publication 1251, 1967. (2) O. Constantinescu. Mycologia 83:473, 1991. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, 1989. (4) G. W. Wilson. Bull. Torrey Bot. Club 34:387, 1907.


Plant Disease ◽  
2003 ◽  
Vol 87 (3) ◽  
pp. 315-315 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
G. Gilardi ◽  
M. L. Gullino

Helichrysum bracteatum, also known as strawflower, is commonly grown for the production of dried flowers and, more recently, as a potted plant. This latter cultivation system is becoming increasingly important on the Liguria Coast in northern Italy. During the spring of 2002, severe oubreaks of a previously unknown disease were observed in commercial farms in the area of Albenga (northern Italy) on several cultivars of H. bracteatum. Leaves of infected plants appeared curled and blistered; the infected portions of leaves turned chlorotic. On the lower leaf surface of chlorotic areas, a dense, whitish growth was evident. Infected leaves eventually wilted without dropping. Basal leaves with poor air circulation were the most severely affected. Certain cultivars of H. bracteatum (such as ‘Florabella Pink’) were most seriously affected, while others (‘Florabella Gold’ and ‘Florabella White’) had less disease. Microscopic observations revealed sporangiophores emerging from the stomata that were dichotomically branched, ending with 4 to 7 sterigmata. The sporangia were globose and measured 15.5 to 16.8 μm in diameter. The pathogen was identified as Bremia lactucae based on the morphological characteristics. Pathogenicity was confirmed by inoculating healthy H. bracteatum (100-day-old ‘Florabella Gold’) as well as Lactuca sativa (25-day-old ‘Salad bowl’) plants with a sporangial suspension (1 × 105 sporangia/ml). Five plants of H. bracteatum and 10 of lettuce were used as replicates. Noninoculated plants served as controls. Inoculated and uninoculated plants were maintained in a growth chamber at 20°C and 90 to 95% relative humidity. After 7 to 10 days, typical symptoms of downy mildew developed on H. bracteatum and lettuce plants artificially inoculated. Bremia lactucae was observed on infected leaves. Uninoculated plants did not show symptoms. To our knowledge, this is the first report of Bremia lactucae on H. bracteatum in Italy. B lactucae was previously reported as the causal agent of downy mildew on H. bracteatum in several countries including the United Kingdom (3), the United States (1), and Egypt (2). References: (1) S. A. Alfieri et al. Index of plant diseases in Florida. Bull No. 11, 1984. (2) H. Elarosi and M. W. Assawah. Rev. Plant Prot. Res., 39:583, 1959. (3) W. C. Moore. British Parasitic Fungi. Cambridge University Press, Cambridge, 1959.


Plant Disease ◽  
2020 ◽  
Author(s):  
Priyam Panda ◽  
Jay Kumar Yadav ◽  
Sushil Kumar Singh ◽  
Amrita Nigam ◽  
Govind P Rao

Matthiola incana R. Br. (Fam: Brassicaceae) is an ornamental, commonly known as hoary stock has an extremely fragrant flowers, which blooms in dense clusters in a large variety of colors. During a survey of flower nurseries in March 2019 at Indian Institute of Sugarcane Research campus, Lucknow, floral virescence (MiV) symptoms (Fig. 1 A, B) were observed in M. incana pots with an incidence of over 40%. Leaf yellows symptoms were also observed on a weed Acalypha indica (AiLY) in Matthiola nursery (Fig. 1 C). Nested PCR assays were carried out to detect and identify the possible association of phytoplasmas with MiV and AiLY symptoms. Three each of symptomatic MiV and AiLY samples and two non-symptomatic samples were collected and processed for DNA extraction from the leaf midrib by CTAB method. Hishimonus phycitis (HP) (Hemiptera: Cicadellidae) leafhopper feeding on MiV symptomatic plants was also collected and DNA was extracted. The DNA of 8 symptomatic and 4 non-symptomatic plants and from the 10 leafhopper was used as a template for PCR assays. Phytoplasma specific 16Sr RNA gene specific primers (P1/P7 and 3Far/3Rev; Schneider et al. 1995; Manimekalai et al. 2010) and multilocus genes’ specific primer pairs for secA (SecAfor1/SecArev3;SecAfo5r/SecARev2; Bekele et al. 2011), secY (SecYF1(VI)/SecYR1(VI);SecYF2(VI)/SecYR1(VI); Lee et al. 2010) and rp genes (rpFIC/rp(I)R1A; rp(VI)F2/ rp(VI)R2; Martini et al. 2007) were employed as previously described. Amplified products of ~1.3kb, ~600bp, ~1.7kb and ~1.0kb of 16S rRNA, secA, secY and rp genes of phytoplasma were consistently amplified in all the MiV and AiLY samples and in the HP leafhopper. No amplifications were achieved in any of the asymptomatic plant samples. Amplified products of all the four genes of MiV, AiLY and HP isolates were purified, sequenced and submitted in GenBank. Sequence comparison and phylogeny analysis of the sequences of the four genes of MiV, AiLY and HP isolates revealed 99% - 100% sequence identity and clustering with clover proliferation phytoplasma related strains (16SrVI group)(Fig.2 A,B,C and D). The virtual RFLP analysis of 17 restriction endonucleases corresponding to the 16S rDNA sequence of MiV, AiLY and HP phytoplasma strains by pDraw program, assigned them into a novel phytoplasma subgroup strain under 16SrVI group, since its HpaII restriction profile was different to earlier classified 16SrVI subgroups but was very close to16SrVI-E subgroup (GenBank acc. no. AY270156) (Fig 3). Earlier, peanut witches’ broom (16SrII-A) phytoplasma was identified associated with M. incana from Italy (Davino et al. 2007). However, the association of clover proliferation phytoplasma (16SrVI) related strain associated with virescence symptom of M. incana is the first report in world. The weed (A. indica) and HP leafhopper were also reported as additional hosts of 16SrVI subgroup related new strain in India, which needs further investigation. The report of a new host and new subgroup of clover proliferation phytoplasma related strain in India is having an epidemiological significance and warrants attention.


2010 ◽  
Vol 59 (6) ◽  
pp. 1166-1166 ◽  
Author(s):  
Y. J. Choi ◽  
A. Lebeda ◽  
M. Sedlarova ◽  
H. D. Shin

Sign in / Sign up

Export Citation Format

Share Document