Cruciferous weeds do not act as major reservoirs of inoculum for black rot outbreaks in New York State

Plant Disease ◽  
2021 ◽  
Author(s):  
Holly W. Lange ◽  
Matthew A. Tancos ◽  
Christine D. Smart

Cruciferous weeds have been shown to harbor diverse Xanthomonas campestris pathovars, including the agronomically-damaging black rot of cabbage pathogen, Xanthomonas campestris pv. campestris. However, the importance of weeds as inoculum sources for X. campestris pv. campestris outbreaks in New York remains unknown. In order to determine if cruciferous weeds act as primary reservoirs for X. campestris pv. campestris, fields that were rotating between cabbage or that had severe black rot outbreaks were chosen for evaluation. Over a consecutive three-year period, 148 cruciferous and non-cruciferous weed samples were collected at 34 unique sites located across five New York counties. Of the 148 weed samples analyzed, 48 X. campestris isolates were identified, with a subset characterized using multilocus sequence analysis. All X. campestris isolates originated from weeds belonging to the Brassicaceae family with predominant weed hosts being shepherd’s purse (Capsella bursa-pastoris), wild mustard (Sinapis arvensis), yellow rocket (Barbarea vulgaris), and pennycress (Thlaspi arvense). Identifying pathogenic X. campestris weed isolates was rare with only eight isolates causing brown necrotic leaf spots or typical V-shaped lesions on cabbage. There was no evidence of cabbage infecting weed isolates persisting in an infected field by overwintering in weed hosts; however, similar cabbage and weed X. campestris haplotypes were identified in the same field during an active black rot outbreak. Xanthomonas campestris weed isolates are genetically diverse both within and between fields, but our findings indicate that X. campestris weed isolates do not appear to act as primary sources of inoculum for B. oleracea fields in New York.

2017 ◽  
Vol 83 (6) ◽  
pp. 373-381 ◽  
Author(s):  
Hirofumi Nagai ◽  
Noriyuki Miyake ◽  
Shinro Kato ◽  
Daisuke Maekawa ◽  
Yasuhiro Inoue ◽  
...  

1999 ◽  
Vol 30 (3) ◽  
pp. 191-195 ◽  
Author(s):  
Sayonara M.P. Assis ◽  
Rosa L.R. Mariano ◽  
Sami J. Michereff ◽  
Gil Silva ◽  
Elizabeth A.A. Maranhão

Twenty yeast isolates, obtained from cabbage phylloplane, were evaluated for antagonistic activity against Xanthomonas campestris pv. campestris, in field. Plants of cabbage cv. Midori were pulverized simultaneously with suspensions of antagonists and pathogen. After 10 days, plants were evaluated through percentage of foliar area with lesions. Percentage of disease severity reduction (DSR%) was also calculated. Yeast isolates LR32, LR42 and LR19 showed, respectively, 72, 75 and 79% of DSR. These antagonists were tested in seven different application periods in relation to pathogen inoculation (T1=4 d before; T2=simultaneously; T3=4 d after; T4=4 d before + simultaneously; T5=4 d after + simultaneously; T6=4 d before + 4 d after; T7=4 d before + simultaneously + 4 d after). The highest DSRs were showed by LR42 (71%), LR42 (67%), LR35 (69%) and LR19 (68%) in the treatments T7, T4, T5 and T6, which significantly differed from the others. The same yeast antagonists were also tested for black rot control using different cabbage cultivars (Fuyutoyo, Master-325, Matsukaze, Midori, Sekai I and Red Winner). The DSRs varied from 58 to 61%, and there was no significant difference among cultivars.


2021 ◽  
Vol 60 (1) ◽  
pp. 51-62
Author(s):  
Samia LAALA ◽  
Sophie CESBRON ◽  
Mohamed KERKOUD ◽  
Franco VALENTINI ◽  
Zouaoui BOUZNAD ◽  
...  

Xanthomonas campestris pv. campestris (Xcc) causes the black rot of cruciferous plants. This seed-borne bacterium is considered as the most destructive disease to cruciferous crops. Although sources of contamination are various, seeds are the main source of transmission. Typical symptoms of black rot were first observed in 2011 on cabbage and cauliflower fields in the main production areas of Algeria. Leaf samples displaying typical symptoms were collected during 2011 to 2014, and 170 strains were isolated from 45 commercial fields. Xcc isolates were very homogeneous in morphological, physiological and biochemical characteristics similar to reference strains, and gave positive pathogenicity and molecular test results (multiplex PCR with specific primers). This is the first record of Xcc in Algeria. Genetic diversity within the isolates was assessed in comparison with strains isolated elsewhere. A multilocus sequence analysis based on two housekeeping genes (gyrB and rpoD) was carried out on 77 strains representative isolates. The isolates grouped into 20 haplotypes defined with 68 polymorphic sites. The phylogenetic tree obtained showed that Xcc is in two groups, and all Algerian strains clustered in group 1 in three subgroups. No relationships were detected between haplotypes and the origins of the seed lots, the varieties of host cabbage, the years of isolation and agroclimatic regions.


2000 ◽  
Vol 78 (9) ◽  
pp. 1144-1149 ◽  
Author(s):  
P A Gay ◽  
S Tuzun

The physiological mechanisms associated with resistance of cabbage to black rot disease seem to be associated with the hydathodes. To investigate the role of hydathodes in disease resistance, total peroxidase activities, anionic peroxidase isozyme expression, and lignin deposition were determined in hydathodes of resistant (Hancock and Green Cup), partially resistant (Cheers), and susceptible (Strukton and Perfect Ball) cabbage varieties (Brassica oleracea L.) during pathogenesis with Xanthomonas campestris pv. campestris. Four-week-old plants were petiole-inoculated with a highly virulent strain of X. campestris pv. campestris (FD91L). Hydathodal fluids were collected daily over a 14-day period from infected plants as well as noninfected, mock-inoculated control plants. Hydathodal fluids of resistant varieties had greater peroxidase activity when compared to susceptible ones, with infected plants having higher peroxidase levels than noninfected plants. Isoelectric focusing revealed the presence of four anionic peroxidase isozymes in hydathodal fluids, with the most anionic one (pI of 3.6) accumulating only upon infection. Lignin deposition in and around the hydathodes was associated with the accumulation of this particular isozyme in hydathodal fluids. The evidence suggests that a rapid, systemic response is associated with resistance to the bacterial pathogen.Key words: peroxidases, hydathodes, isozymes, black rot disease, cabbage, Xanthomonas campestris pv. campestris.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 298-305 ◽  
Author(s):  
Brita Dahl Jensen ◽  
Joana G. Vicente ◽  
Hira K. Manandhar ◽  
Steven J. Roberts

Black rot caused by Xanthomonas campestris pv. campestris was found in 28 sampled cabbage fields in five major cabbage-growing districts in Nepal in 2001 and in four cauliflower fields in two districts and a leaf mustard seed bed in 2003. Pathogenic X. campestris pv. campestris strains were obtained from 39 cabbage plants, 4 cauliflower plants, and 1 leaf mustard plant with typical lesions. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) using repetitive extragenic palindromic, enterobacterial repetitive intergenic consensus, and BOX primers was used to assess the genetic diversity. Strains were also race typed using a differential series of Brassica spp. Cabbage strains belonged to five races (races 1, 4, 5, 6, and 7), with races 4, 1, and 6 the most common. All cauliflower strains were race 4 and the leaf mustard strain was race 6. A dendrogram derived from the combined rep-PCR profiles showed that the Nepalese X. campestris pv. campestris strains clustered separately from other Xanthomonas spp. and pathovars. Race 1 strains clustered together and strains of races 4, 5, and 6 were each split into at least two clusters. The presence of different races and the genetic variability of the pathogen should be considered when resistant cultivars are bred and introduced into regions in Nepal to control black rot of brassicas.


Sign in / Sign up

Export Citation Format

Share Document