scholarly journals First Report of “Candidatus Liberibacter solanacearum” Associated with Psyllid-Affected Carrots in Norway

Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 454-454 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
L. Sundheim ◽  
R. Meadow

Carrot (Daucus carota) plants with symptoms resembling those associated with the carrot psyllid Trioza apicalis and the bacterium “Candidatus Liberibacter solanacearum” (1–4) were observed in 70 to 80% of commercial fields and experimental plots in southeastern Norway from late July to mid-September of 2011; all cultivars grown were affected with approximately 10 to 100% symptomatic plants per field. T. apicalis, a pest of carrot in northern and central Europe, including Norway, can cause as much as 100% crop loss and is associated with “Ca. L. solanacearum” (1–4). Symptoms on affected plants include leaf curling, yellow and purple discoloration of leaves, stunted growth of shoots and roots, and proliferation of secondary roots. Carrot plant samples were collected from five T. apicalis-infested fields in Ostfold, Vestfold, Oppland, and Hedmark counties. Total DNA was extracted from petiole and root tissues of 54 plants, including 27 symptomatic plants and 27 asymptomatic plants from four cultivars (Namdal, Panther, Romance, and Yukon) with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (2,3). DNA samples were tested by PCR assay using primer pairs OA2/OI2c and CL514F/R to amplify a portion of 16S rDNA and rplJ/rplL ribosomal protein genes, respectively, of “Ca. L. solanacearum” (2,3). A 1,168-bp 16S rDNA fragment was detected in the DNA from 22 (81.5%) symptomatic plants and a 668-bp rplJ/rplL fragment was amplified from the DNA of 26 (96.3%) symptomatic and 5 (18.5%) asymptomatic plants, indicating the presence of liberibacter. No liberibacter was detected in the asymptomatic carrot plants with the primer pair OA2/OI2c. Amplicons from the DNA of four carrot root samples with each primer pair were cloned (pCR2.1-TOPO; Invitrogen, Carlsbad, CA) and three clones of each of the eight amplicons were sequenced (MCLAB, San Francisco, CA). BLAST analysis of the 16S rDNA consensus sequence from the carrot root tissues (GenBank Accession No. JN863097) showed 100% identity to those of “Ca. L. solanacearum” previously amplified from carrot (GU373048 and GU373049) and T. apicalis (GU477254 and GU477255) in Finland (2,3). The rplJ/rplL consensus sequence from the carrots (GenBank Accession No. JN863098) was 99% identical to the sequences of rplJ/rplL “Ca. L. solanacearum” ribosomal protein gene from carrots in Finland (GU373050 and GU373051). To our knowledge, this is the first report of “Ca. L. solanacearum” associated with carrot in Norway. This bacterial species has caused millions of dollars in losses to potato and several other solanaceous crops in North and Central America and New Zealand (1). This plant pathogen has also been reported from carrots and T. apicalis in Finland, where it has caused significant economic damage to carrot crops (2–4). References: (1) J. E. Munyaneza. Southwest. Entomol. 35:471, 2010. (2) J. E. Munyaneza et al. Plant Dis. 94:639, 2010. (3) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010. (4) A. Nissinen et al. Entomol. Exp. Appl. 125:277, 2007.

Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 453-453 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
R. Stegmark ◽  
A. K. Arvidsson ◽  
O. Anderbrant ◽  
...  

Carrot (Daucus carota) plants with symptoms resembling those associated with the carrot psyllid Trioza apicalis and the bacterium “Candidatus Liberibacter solanacearum” (1–4) were observed in 70% of commercial fields in southern Sweden in August 2011, with approximately 1 to 45% symptomatic plants per field. T. apicalis, a pest of carrot in northern and central Europe, including Sweden, can cause as much as 100% crop loss and is associated with “Ca. L. solanacearum” (1–4). Symptoms on affected plants include leaf curling, yellow and purple discoloration of leaves, stunted growth of shoots and roots, and proliferation of secondary roots (3). Carrot plant and psyllid samples were collected from fields in the province of Halland. Total DNA was extracted from petiole and root tissues of 33 symptomatic and 16 asymptomatic plants (cvs. Nevis and Florida), with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (2,3). DNA was also extracted from 155 psyllids (3). DNA samples were tested by PCR using primer pairs OA2/OI2c (5′'-GCGCTTATTTTTAATAGGAGCGGCA-3′/5′-GCCTCGCGACTTCGCAACCCAT-3′) and CL514F/R (5′-CTCTAAGATTTCGGTTGGTT-3′/5′-TATATCTATCGTTGCACCAG-3′), to amplify a portion of 16S rDNA and rplJ/rplL ribosomal protein genes, respectively, of “Ca. L. solanacearum” (2,3). A 1,168-bp 16S rDNA fragment was detected in the DNA from all 33 symptomatic and two asymptomatic plants, and a 668-bp rplJ/rplL fragment was amplified from the DNA of all 33 symptomatic and four asymptomatic plants, indicating the presence of liberibacter. DNA from 23 and 49 psyllid samples yielded similar amplicons with OA2/OI2c and CL514F/R primer pairs, respectively. Amplicons from the DNA of four carrot roots and three T. apicalis with each primer pair were cloned (pCR2.1-TOPO; Invitrogen, Carlsbad, CA) and three clones of each of the 14 amplicons were sequenced (MCLAB, San Francisco, CA). BLAST analysis of the 16S rDNA consensus sequences from carrot (GenBank Accession No. JN863095) and T. apicalis (GenBank Accession No. NJ863096) showed 100% identity to those of “Ca. L. solanacearum” previously amplified from carrot (GU373048 and GU373049) and T. apicalis (GU477254 and GU477255) from Finland (2,3). The rplJ/rplL consensus sequences from carrot (GenBank Accession No. JN863093) and T. apicalis (GenBank Accession No. JN863094) were 99% identical to the sequences of rplJ/rplL “Ca. L. solanacearum” ribosomal protein gene from carrots in Finland (GU373050 and GU373051). To our knowledge, this is the first report of “Ca. L. solanacearum” associated with carrot and T. apicalis in Sweden. The disease associated with this bacterium caused millions of dollars in losses to potato and several other solanaceous crops in North and Central America and New Zealand (1). This plant pathogen is also associated with significant economic damage to carrot crops observed in Finland (2,3). References: (1) J. E. Munyaneza. Southwest. Entomol. 35:471, 2010. (2) J. E. Munyaneza et al. Plant Dis. 94:639, 2010. (3) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010. (4) A. Nissinen et al. Entomol. Exp. Appl. 125:277, 2007.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1076-1076 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
J. M. Crosslin ◽  
J. A. Garzón-Tiznado ◽  
O. G. Cardenas-Valenzuela

Tomato (Solanum lycopersicum) plants exhibiting symptoms resembling those of permanent yellowing disease (known in Mexico as “permanente del tomate”) that is commonly associated with phytoplasmas (1) were observed in tomato fields in Sinaloa, México in March 2009. Plant symptoms also resembled those caused by “Candidatus Liberibacter solanacearum” infection (2). Affected plants showed an overall chlorosis, severe stunting, leaf cupping, purple discoloration of veins, excessive branching of axillary shoots, and leaf scorching (1,2). Symptom incidence ranged from 18 to 40%. To investigate whether liberibacter is associated with permanent yellowing disease of tomato in México, eight symptomatic and five asymptomatic tomato plants were collected from two fields in La Cruz de Elota and Culiacán, Sinaloa. Total DNA was extracted from the top whole leaf tissue of symptomatic and asymptomatic plants with cetyltrimethylammoniumbromide (CTAB) buffer (3,4). DNA samples were tested by PCR using primer pairs OA2/OI2c and CL514F/CL514R, which amplify a sequence from the 16S rDNA and rplJ and rplL ribosomal protein genes, respectively, of “Ca. L. solanacearum” (2,4). The DNA samples were also tested for phytoplasmas with nested PCR using universal primer pairs P1/P7 and fU5/rU3 (3). DNA from five and four symptomatic plants yielded the expected 1,168-bp 16S rDNA and 669-bp rplJ/rplL amplicons, respectively, indicating the presence of liberibacter. Extracts from asymptomatic plants yielded no products with these primers. Amplicons generated from three symptomatic plants with each primer pair were cloned into pCRII-TOPO plasmid vectors (Invitrogen, Carlsbad, CA) and three clones of each of these amplicons were subsequently sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST analysis of the 16S rDNA consensus sequence (GenBank Accession No. FJ957897) showed 100% identity to 16S rDNA sequences of “Ca. L. solanacearum” amplified from S. betaceum (EU935004) and S. lycopersicum (EU834130) from New Zealand (2), and “Ca. L. psyllaurous” from potato psyllids (EU812559). The rplJ/rplL consensus sequence (GenBank Accession No. FJ957895) was 100% identical to the analogous rplJ and rplL “Ca. L. solanacearum” ribosomal protein gene sequence amplified from S. lycopersicum (EU834131) from New Zealand (2) and ‘Ca. Liberibacter’ sp. sequence amplified from zebra chip-infected potatoes from Lancaster, CA (FJ498803). No phytoplasmas were detected in the symptomatic tomato plants. To our knowledge, this is the first report of “Ca. L. solanacearum” associated with tomatoes in México. In 2008, this bacterium was detected in glasshouse tomatoes in New Zealand and caused millions of dollars in losses to the commercial glasshouse tomato industry (2). References: (1) R. L. Holguín-Peña et al. Plant Dis. 91:328, 2007. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007. (4) J. E. Munyaneza et al. Plant Dis. 93:552, 2009.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 639-639 ◽  
Author(s):  
J. E. Munyaneza ◽  
T. W. Fisher ◽  
V. G. Sengoda ◽  
S. F. Garczynski ◽  
A. Nissinen ◽  
...  

Carrot (Daucus carota) plants with symptoms resembling those of carrot psyllid (Trioza apicalis) damage (3,4) were observed in 14 commercial fields in southern Finland in August 2008; all cultivars grown were affected at approximately 5 to 35% symptomatic plants per field. T. apicalis, a pest of carrots in northern and central Europe, can cause up to 100% crop loss (3,4). Symptoms on affected plants included leaf curling, yellow and purple discoloration of leaves, stunted growth of shoots and roots, and proliferation of secondary roots (3,4). Given recent association of liberibacter with several annual crops affected by psyllids (1,2), an investigation on whether this bacterium is associated with symptoms of psyllid damage on carrots was conducted. Total DNA was extracted from petiole tissue of 20 symptomatic and 18 asymptomatic plants (cv. Maestro, Nanda, Nipomo, Nerac, and Fontana) sampled from 10 psyllid-infested fields in southern Finland, as well as 15 plants (cv. Primecut, Cheyenne, and Triple Play) grown from seed in an insect-free greenhouse, with the cetyltrimethylammoniumbromide (CTAB) method (2). DNA was also extracted from 10 carrot roots (cv. Nantura) of plants continuously exposed to field-collected carrot psyllid colonies in the laboratory. DNA samples were tested by PCR using primer pairs OA2/OI2c and CL514F/R to amplify a portion of 16S rDNA and rplJ/rplL ribosomal protein genes, respectively, of “Candidatus Liberibacter solanacearum” (1,2). A 1,168 bp 16S rDNA fragment was detected in DNA from 1 asymptomatic and 16 symptomatic plants and a 669 bp rplJ/rplL fragment was amplified from DNA from 19 symptomatic and 6 asymptomatic plants, indicating presence of liberibacter. DNA from all 10 root samples yielded similar amplicons with both primer pairs. DNA from all the greenhouse carrot plants yielded no amplicon. Amplicons from DNA from three petioles and three roots with each primer pair were cloned (pCR2.1-TOPO; Invitrogen, Carlsbad, CA) and three clones of each of the 12 amplicons were sequenced (MCLAB, San Francisco, CA). BLAST analysis of the 16S rDNA consensus sequences from petiole and root tissues (GenBank Accession Nos. GU373049 and GU373048, respectively) showed 99.9% identity to those of “Ca. L. solanacearum” amplified from Capsicum annuum (FJ957896) and Solanum lycopersicum (FJ957897) from Mexico, and “Ca. L. psyllaurous” from potato psyllids (EU812559). The rplJ/rplL consensus sequences from petioles and roots (GenBank Accession Nos. GU373051 and GU373050, respectively) were 97.9% identical to the analogous rplJ/rplL “Ca. L. solanacearum” ribosomal protein gene sequence from solanaceous crops in New Zealand (EU834131) and to “Ca. Liberibacter” sp. sequence from zebra chip-affected potatoes in California (FJ498803). To our knowledge, this is the first report of “Ca. L. solanacearum” associated with a nonsolanaceous species and the first report of this pathogen outside of North and Central America and New Zealand (1,2). References: (1) L. W. Liefting et al. Plant Dis. 93:208, 2009. (2) J. E. Munyaneza et al. Plant Dis. 93:552, 2009. (3) G. Nehlin et al. J. Chem. Ecol. 20:771, 1994. (4) A. Nissinen et al. Entomol. Exp. Appl. 125:277, 2007.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 839-839 ◽  
Author(s):  
M. Loiseau ◽  
S. Garnier ◽  
V. Boirin ◽  
M. Merieau ◽  
A. Leguay ◽  
...  

In summer 2012, carrot (Daucus carota L.) plants displaying symptoms of leaf yellowing, stunting and proliferation of dwarfed shoots with bushy tops, and a dense hairy growth of secondary roots were observed. Symptomatic carrots were collected from three fields used for seed production and located in Region Centre of France near Orléans. The presence of psyllids (Psyllidae) in one of the fields was reported but they were not clearly identified. Fifty percent of the field was infected. Due to a large amount of plant debris, the harvested seeds were difficult to separate and the germination rate was low (from 10 to 77%), rendering them unmarketable. The symptoms observed were similar to those described for carrots infected by Aster yellows phytoplasma and ‘Candidatus Liberibacter solanacearum’ in Europe (3). Total DNA was extracted from petiole and root tissue of 16 symptomatic and 6 asymptomatic carrots (cv. Amsterdam, CAC3075), 2 samples of black nightshade leaves (Solanum nigrum) collected from the same fields, and 2 samples of carrot plants (cv Berlicum) grown in a high containment greenhouse, using a cetyl trimethyl ammonium bromide (CTAB) buffer extraction method. All DNA extracts were tested for phytoplasmas (1) and for ‘Ca. L. solanacearum’ by real-time PCR (2). DNA extracts were also tested for ‘Ca. L. solanacearum’ by PCR using primer pairs OA2/OI2c and CL514F/R to amplify a portion of 16S rDNA and rpIJ/rpIL ribosomal protein genes, respectively (4). DNA from greenhouse carrot plants yielded no amplicon with all PCR. Phytoplasma was not detected in any of the tested samples. However, amplification was observed with the real-time PCR assay for ‘Ca. L. solanacearum’ (2) for all DNA samples extracted from symptomatic and asymptomatic field carrots (cycle threshold [ct] values between 16.75 and 30.59), and from S. nigrum (ct between 31.62 and 33.25). For field carrot DNA, a 1,168-bp 16S rDNA fragment and a 669-bp rpIJ/rpIL fragment were amplified whereas DNA from S. nigrum yielded no amplicon. Four amplicons obtained from these PCR assays with both primer pairs from symptomatic carrot samples were sequenced directly (Beckmann Coulter Genomics, Grenoble, France). BLAST analysis of the 16S rDNA sequences (KF357911) showed 99% nucleotide identity to those of ‘Ca. L. solanacearum’ amplified from carrot in Finland (GU373049). The rpIJ/rpIL nucleotide sequences (KF357912) were 99% identical to sequences of the analogous rpIJ/rpIL ‘Ca. L. solanacearum’ ribosomal protein gene from carrot in Spain (JX308305). These results confirmed the presence of ‘Ca. L. solanacearum’ in all symptomatic and asymptomatic carrot sampled in Region Centre, France. To our knowledge, this is the first report of this pathogen in carrot in France. These results, in addition to those previously obtained (4), suggest a wider distribution of ‘Ca. L. solanacearum’ than previously reported in Europe and should lead plant health managers to consider this pathogen as an emerging threat. References: (1) N. M. Christensen et al. Mol. Plant Microbe Interact. 17:1175, 2004. (2) W. Li et al. J. Microbiol. Methods 78:59, 2009. (3) J. E. Munyaneza et al. Plant Dis. 94:639, 2010. (4) J. E. Munyaneza et al. Plant Dis. 96:453, 2012.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1076-1076 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
J. M. Crosslin ◽  
J. A. Garzón-Tiznado ◽  
O. G. Cardenas-Valenzuela

Bell pepper (Capsicum annuum) plants exhibiting symptoms that resembled those of potato psyllid (Bactericera cockerelli Sulc) damage and “Candidatus Liberibacter solanacearum” infection (2) were observed in a pepper field in La Cruz de Elota, Sinaloa, México in March 2009, with an infection rate of 1.5%. Plants exhibited chlorotic or pale green apical growth and leaf cupping, sharp tapering of the leaf apex, shortened internodes, and an overall stunting (2). Total DNA was extracted from the top whole leaf tissue of nine symptomatic and five asymptomatic pepper plants with cetyltrimethylammoniumbromide (CTAB) buffer (3,4). Seven and eight of the nine selected symptomatic pepper plants yielded the expected 1,168-bp 16S rDNA and the expected 669-bp rplJ/rplL ribosomal protein gene amplicons with the “Ca. L. solanacearum” specific OA2/OI2c and CL514F/CL514R primer pairs, respectively, indicating the presence of liberibacter (2,4). Nucleic acid from asymptomatic pepper plants yielded no products with these primers. Three amplicons generated from symptomatic pepper plants with each primer pair were cloned into pCRII-TOPO plasmid vectors (Invitrogen, Carlsbad, CA) and three clones of each amplicon were sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST analysis of the 16S rDNA consensus sequence (GenBank Accession No. FJ957896) showed 100% identity to 16S rDNA sequences of “Ca. L. solanacearum” amplified from Solanum betaceum (EU935004) and S. lycopersicum (EU834130) from New Zealand (2), and “Ca. L. psyllaurous” from potato psyllids (EU812559) (1). The ribosomal protein gene consensus sequence (GenBank Accession No. FJ957894) was 100% identical to the analogous rplJ and rplL “Ca. L. solanacearum” ribosomal protein gene sequence amplified from S. lycopersicum (EU834131) from New Zealand (2) and to ‘Ca. Liberibacter’ sp. sequence amplified from zebra chip-infected potato tubers from Lancaster, CA (FJ498803). To our knowledge, this is the first report of “Ca. L. solanacearum” associated with bell pepper in México. “Ca. L. solanacearum” was first reported in tomato and pepper plants in 2008 in New Zealand, where it has resulted in plant decline and significant yield loss, resulting in millions of dollars in losses to the commercial glasshouse tomato and pepper industry (2). Zebra chip, a new and emerging potato disease associated with ‘Ca. Liberibacter’ sp., was first identified in México in 1994, where it has caused significant economic damage, often leading to abandonment of entire potato fields (3,4). References: (1) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007. (4) J. E. Munyaneza et al. Plant Dis. 93:552, 2009.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 582-582 ◽  
Author(s):  
A. Alfaro-Fernández ◽  
M. C. Cebrián ◽  
F. J. Villaescusa ◽  
A. Hermoso de Mendoza ◽  
J. C. Ferrándiz ◽  
...  

In the summer of 2008, symptoms of leaf curling with yellow, bronze, and purple discoloration, twisting of petioles, stunting of shoots and tap roots, and proliferation of secondary roots were observed in 18 commercial carrot (Daucus carota L.) fields (~62 ha) severely infested with psyllids (mainly Bactericera sp.) from 52 fields (297 ha) located in Alicante and Albacete provinces of Spain. Incidence of symptomatic plants was variable among fields. Similar symptoms were observed in 2009, 2010, and 2011. Symptoms resembled those associated with phytoplasma, spiroplasma, or the bacterium ‘Candidatus Liberibacter solanacearum’ infections in carrot (1–4). Aster yellows and stolbur phytoplasmas and Spiroplasma citri have previously been reported from carrot in mainland Spain but liberibacter infection has not been documented in this region (1). Studies were conducted to determine if ‘Ca. L. solanacearum’ was associated with the symptoms. Petiole samples of symptomatic carrot plants were collected in 2009 (25 from 9 fields in Alicante and Albacete provinces) and early 2010 (21 from 8 fields in Alicante, Albacete, and Valencia provinces) from symptomatic fields where incidence ranged from 50 to 90%. In addition, one sample collected in 2008 in Alicante was included in the assay. Also, samples were collected from five asymptomatic carrot plants. Total DNA was extracted from 0.5 g of petiole tissue of each sample with the CTAB extraction buffer method (3,4). DNA extractions were analyzed by PCR assay using primer pairs OA2/OI2c and CL514F/R to amplify a portion of 16S rDNA and rplJ/rplL ribosomal protein genes, respectively, of ‘Ca. L. solanacearum’ (3,4). DNA samples were also tested for phytoplasmas and S. citri by nested-PCR assays using primer pairs P1/P7 followed by R16F2n/R16R2n and ScR16F1/ScR16R1 followed by ScR16F1A/ScR16R2, respectively (2). A 1,168-bp fragment of 16S rDNA was detected in DNA extracted from 1, 12, and 12 symptomatic samples collected in 2008, 2009, and 2010, respectively, suggesting the presence of ‘Ca. L. solanacearum’ in the carrot samples. A 669-bp rplJ/rplL fragment also was amplified from DNA of the same samples. Liberibacter was not detected in asymptomatic plants. Eight and two samples were infected with S. citri and aster yellows phytoplasmas, respectively. Three samples were infected with S. citri and ‘Ca. L. solanacearum’ and one sample was infected with all three pathogens. Three amplicons obtained from the PCR assays with both primer pairs from carrot samples collected in 2009 and 2010 were sequenced directly. BLAST analysis of the 16S rDNA sequences (GenBank Nos. HQ454302, HQ454303, and HQ454304) showed 99% nucleotide identity to those of ‘Ca. L. solanacearum’ amplified from carrot in Finland (GU373049). The rplJ/rplL nucleotide sequences (HQ454305, HQ454306, and HQ454307) were 97% identical to sequences of the analogous rplJ/rplL ‘Ca. L. solanacearum’ ribosomal protein gene from carrot in Finland (GU373051). To our knowledge, this is the first report of ‘Ca. L. solanacearum’ in carrot in mainland Spain and also the first evidence of mixed infections of S. citri, ‘Ca. L. solanacearum’, and phytoplasmas in carrot. References: (1) M. C. Cebrián et al. Plant Dis. 94:1264, 2010. (2) I.-M. Lee et al. Plant Dis. 90:989, 2006. (3) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010. (4) J. E. Munyaneza et al. Plant Dis. 94:639, 2010.


Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 154-154 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
E. Aguilar ◽  
B. Bextine ◽  
K. F. McCue

In April and May of 2012, bell pepper (Capsicum annuum) plants exhibiting symptoms that resembled those of the bacterium ‘Candidatus Liberibacter solanacearum’ infection (2,4) were observed in commercial pepper fields in several departments in Honduras, including Francisco Morazán, Ocotepeque, El Paraíso, and Olancho. Many of the fields were infested with the psyllid Bactericera cockerelli, a vector of ‘Ca. L. solanacearum’ (3). The plants exhibited chlorotic or pale green apical growth and leaf cupping, sharp tapering of the leaf apex, shortened internodes, and overall stunting (2,4). All cultivars grown were affected and 20 to 75% of plants in each field were symptomatic. Pepper (var. Nataly) plant samples were collected from a total of eight affected fields (two fields per department). Total DNA was extracted from the top whole leaf tissue of a total of 19 plants, including 14 symptomatic and 5 asymptomatic pepper plants, with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (1). The DNA samples were then tested by PCR using specific primer sets OA2/OI2c and OMB 1482f/2086r to amplify a portion of 16S rDNA and the outer membrane protein (OMB) genes, respectively, of ‘Ca. L. solanacearum’ (1,2). OMB gene and 16S rDNA fragments of 605 and 1,168 bp, respectively, were amplified from the DNA of 7 of 14 (50%) symptomatic plants with each primer set, indicating the presence of ‘Ca. L. solanacearum.’ No ‘Ca. L. solanacearum’ was detected in the five asymptomatic plants with either primer sets. DNA amplicons with both primer sets were cloned from the DNA of plant samples collected from each of the three departments: Francisco Morazán (in the locality of Zamorano), Ocotepeque (municipality of Plan del Rancho in Sinuapa), and El Paraíso (municipality of Danlí), and four clones of each of the six amplicons were sequenced. BLASTn analysis of the 16S rDNA resulted in a single consensus sequence for all three locations (deposited in GenBank as Accession Nos. KF188226, KF188227, and KF188228) and showed 100% identity to numerous 16S rDNA sequences of ‘Ca. L. solanacearum’ in GenBank, including accessions HM245242, JF811596, and KC768319. Similarly, identical OMB consensus sequences were observed in all three locations (deposited in GenBank as KF188230, KF188231, and KF188233) that are 100% identical to several ‘Ca. L. solanacearum’ sequences in GenBank (e.g., KC768331 and CP002371) along with a second consensus sequence (deposited in GenBank as accession KF188232) from Ocotepeque that was 99% identical to the consensus sequence from the three locations and sequences in GenBank. To our knowledge, this is the first report of ‘Ca. L. solanacearum’ associated with pepper crops in Honduras, where pepper constitutes an economically important commodity. This bacterium has also caused millions of dollars in losses to potato and several other solanaceous crops in United States, Mexico, Central America, and New Zealand (1,2,3,4). Furthermore, ‘Ca. L. solanacearum’ has been reported to severely damage carrot crops in Europe, where it is transmitted to carrot by the psyllids Trioza apicalis and Bactericera trigonica (3). Monitoring this pathogen and its vectors will prevent serious damage they cause to economically important crops. References: (1) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012. (4) J. E. Munyaneza et al. Plant Dis. 93:1076, 2009.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1426-1426 ◽  
Author(s):  
R. Tahzima ◽  
M. Maes ◽  
E. H. Achbani ◽  
K. D. Swisher ◽  
J. E. Munyaneza ◽  
...  

In March of 2014, carrot plants (Daucus carota L. var. Mascot) exhibiting symptoms of yellowing, purpling, and curling of leaves, proliferation of shoots, formation of hairy secondary roots, general stunting, and plant decline were observed in commercial fields in the Gharb region of Morocco. The symptoms resembled those caused by phytoplasmas, Spiroplasma citri, or ‘Candidatus Liberibacter solanacearum’ infection (1,2,3). About 30% of the plants in each field were symptomatic and plants were infested with unidentified psyllid nymphs; some psyllids are known vectors of ‘Ca. L. solanacearum.’ A total of 10 symptomatic and 2 asymptomatic plants were collected from three fields. Total DNA was extracted from petiole and root tissues of each of the carrots, using the CTAB buffer extraction method (3). The DNA samples were tested for phytoplasmas and spiroplasmas by PCR (3) but neither pathogen was detected in the samples. The DNA extracts were tested for ‘Ca. L. solanacearum’ by PCR using specific primer pairs OA2/OI2c, Lso adkF/R, and CL514F/R, to amplify a partial fragment of the 16S rDNA, the adenylate kinase gene, and rpIJ/rpIL50S rDNA ribosomal protein genes, respectively (1,2,5). DNA samples from all 10 symptomatic carrots yielded specific bands; 1,168 bp for the 16S rDNA fragment, 770 bp for the adk fragment, and 669 bp for rpIJ/rpIL, indicating the presence of ‘Ca. L. solanacearum.’ No ‘Ca. L. solanacearum’ was detected in asymptomatic plants. DNA amplicons of three plant samples (one plant/field) for each primer pair were directly sequenced (Macrogen Inc., Amsterdam). Sequencing results identified two distinct products for the OA2/OI2c primer pair (GenBank Accession Nos. KJ740159 and KJ740160), and BLAST analysis of the 16S rDNA amplicons showed 99 and 100% identity to ‘Ca. L. solanacearum’ (KF737346 and HQ454302, respectively). Two different sequences of the adk amplicon were obtained (KJ740162 and KJ740163), both of which were 98% identical to ‘Ca. L. solanacearum’ (CP002371). Sequencing results also identified two distinct products for the CL514F/R primer pair (KJ754506 and KJ754507), and BLAST analysis of the 50S rDNA ribosomal protein showed 99 and 100% identity to ‘Ca. L. solanacearum’ (KF357912 and HQ454321, respectively). The differences in our 16S and 50S rDNA sequences identified the presence of both ‘Ca. L. solanacearum’ haplotypes D and E (4). To our knowledge, this is the first report of the occurrence of ‘Ca. L. solanacearum’ in Morocco and Africa, suggesting a wider distribution of the bacterium in carrot crops in the Mediterranean region, including North Africa. ‘Ca. L. solanacearum’ has caused economic damages to carrot and celery crops in the Canary Islands and mainland Spain, France, Sweden, Norway, and Finland (3). This bacterium has also caused millions of dollars in losses to potato and several other solanaceous crops in the United States, Mexico, Central America, and New Zealand (1,2,5). Given the economic impact of ‘Ca. L. solanacearum’ on numerous important crops worldwide, it is imperative that preventive measures be taken to limit its spread. References: (1) L. W. Liefting et al. Plant Dis. 93:208, 2009. (2) J. E. Munyaneza et al. Plant Dis. 93:552, 2009. (3) J. E. Munyaneza et al. J. Plant Pathol. 93:697, 2011. (4) W. R. Nelson et al. Eur. J. Plant Pathol. 135:633, 2013. (5) A. Ravindran et al. Plant Dis. 95:1542, 2011.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1244-1244 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
E. Aguilar ◽  
B. Bextine ◽  
K. F. McCue

In April of 2012, tobacco (Nicotiana tabacum) plants with symptoms resembling those caused by viral infection were observed in commercial fields in several departments in Nicaragua, including Esteli and Nueva Segovia. Heavy infestations of the psyllid Bactericera cockerelli, a major insect pest of potato and other solanaceous crops and vector of the bacterium “Candidatus Liberibacter solanacearum” (Lso) (2,3), were observed in the affected fields. All cultivars grown were affected and 5 to 100% of plants in each field were symptomatic. Symptoms on affected plants included apical leaf curling and stunting, overall chlorosis and plant stunting, young plant deformation with cabbage-like leaves, wilting, internal vascular necrosis of stems and leaf petioles, and overall poor leaf quality. Plant samples were collected from a total of three psyllid-infested fields in the municipalities of Esteli, Condega, and Jalapa (one field/municipality). The plant samples were first tested for viruses, including Potato virus Y, Tobacco mosaic virus, Cucumber mosaic virus, and Impatiens necrotic spot virus, using Immunostrips (Agdia, Elkhart, IN) and no virus was detected. Total DNA was extracted from leaf tissues of a total of 22 plants, including 17 symptomatic plants and five asymptomatic plants from two cultivars (Corojo and Habano) with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (2,4). The DNA samples were tested by PCR using specific primer pairs OA2/OI2c and OMB 1482f/2086r, to amplify a portion of 16S rDNA and the outer membrane protein (OMB) genes, respectively, of Lso (2). 16 rDNA and OMB gene-derived fragments of 1,168 and 605 bp, respectively, were amplified from the DNA of 13 of 17 (76.5%) symptomatic plants, indicating the presence of Lso. No Lso was detected in the five asymptomatic plants. DNA amplicons of three plant samples (one plant/field) with each primer pair were cloned and two to four clones of each of the six amplicons were sequenced. BLASTn analysis of the 16S rDNA consensus sequences was the same for all three locations (GenBank Accession Nos. KC768323, KC768324, and KC768325) and showed 100% identity to numerous 16 rDNA sequences of Lso in GenBank, including accessions HM245242, JF811596, and JX559779. Similarly, identical OMB consensus sequences were observed in all three locations (KC768331 and KC768332 for Jalapa and Condega, respectively) that are 97 to 100% identical to a number of Lso sequences in GenBank (e.g., CP002371, FJ914617, JN848754, and JN848752). A second OMB sequence was isolated from the Esteli sample (KC768333) that was 98% identical with the consensus sequences from this and other sites and 100% identical to an OMB sequence from Lso in GenBank (JN848754). To our knowledge, this is the first report of Lso associated with tobacco. Tobacco is an important crop in many parts of the world, including Central and South America. This bacterium has also caused millions of dollars in losses to potato and several other solanaceous crops in the Americas and New Zealand (3). In addition, this plant pathogen has been reported as serious pest of carrot in Europe, where it is associated with the psyllids Trioza apicalis and B. trigonica (1,4). References: (1) A. Alfaro-Fernandez et al. Plant Dis. 96:581, 2012. (2) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (3) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012. (4) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1109-1109 ◽  
Author(s):  
B. Bextine ◽  
A. Arp ◽  
E. Flores ◽  
E. Aguilar ◽  
L. Lastrea ◽  
...  

In September 2011, potato (Solanum tuberosum) tubers grown in Nicaragua outside of Estelí and Jinotega were observed with internal discoloration suggestive of zebra chip (ZC); and the plants showed foliar symptoms of chlorosis, leaf scorching, wilting, vascular discoloration, swollen nodes, twisted stems, and aerial tubers (3). Disease incidence ranged from 50 to 95% in eight fields ranging from 5 to 12 ha in the Estelí and Jinotega regions of Nicaragua. Leaf samples and psyllids were collected from two fields, and total DNA was purified from the leaves of 17 symptomatic and 10 asymptomatic plants. DNA was also extracted from 20 individual potato psyllids. Primers specific for 16S rDNA (OA2 and OI2c) and the surface antigen gene (OMB 1482f and 2086r) of Candidatus Liberibacter solanacearum (CLs) were used to confirm the presence of the pathogen in infected potatoes and insects (2). All symptomatic potato leaf samples tested positive for the presence of CLs using both primers, and no asymptomatic plants had positive results. Seven insects tested positive for the presence of CLs. 16S rDNA sequences obtained for all positive samples (1,071 bp) were identical and showed 99 to 100% identity to a number of rDNA sequences of CLs in GenBank (Accession Nos. HM246509 and FJ957897). 16S rDNA sequences from two CLs-infected plants, one from Estelí, Nicaragua (JX559779) and one from Jinotega, Nicaragua (JK559780), were deposited in GenBank. Identity of insects was done using a morphological key, and then verified as Bactericera cockerelli using a real-time PCR assay with melt temperature analysis of the cytochrome c oxidase 1 gene, as described by Chapman et al. (1). Sequencing of the amplified DNA yielded an approximately 63-bp read, with 100% homology to reference sequences of B. cockerelli (AY971886) and those obtained from psyllids collected in McAllen, TX, in 2010. B. cockerelli samples were collected from both locations. Similar to previous reports of ZC in new locations, foliar and tuber symptoms associated with ZC were observed in all eight fields in these two Nicaraguan potato-growing regions, specific PCR amplification with two primer pairs was completed, 16S rDNA sequence analyses showed 100% similarity to reference sequences of CLs, and the presence of potato psyllids which tested positive for the presence of CLs provide evidence that ZC is now present in Nicaragua. Potatoes rank in the top 20 commodities produced in Nicaragua, resulting in >$4.5M annual revenue. Because CLs has caused significant economic damage to potatoes in the United States, Mexico, Guatemala, and Honduras, this finding has significance for potato production in Central America. References: (1) R. I. Chapman et al. Southwest. Entomol. 37:475, 2012. (2) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (3) L. W. Liefting et al. Internat. J. Syst. Evol. Microbiol. 59:2274, 2009.


Sign in / Sign up

Export Citation Format

Share Document