scholarly journals First Report of Anthracnose of Alocasia macrorrhiza Caused by Colletotrichum karstii in Guangdong, China

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 696-696 ◽  
Author(s):  
Y. He ◽  
C. Shu ◽  
J. Chen ◽  
E. Zhou

Alocasia macrorrhiza (L.) Schott. (Araceae), native to South America, is a common, herbaceous perennial ornamental plant in tropical and subtropical areas (1). A severe leaf spot disease was observed on this plant in several places on the campus of authors' university in Guangzhou, Guangdong Province, China, in April 2013. Initial symptoms were water-soaked, dark green leaf spots. These small spots gradually expanded to 6- to 11-mm circular lesions. They were grayish-white in color with a yellow halo and many small, black, concentric dots were observed on them. Microscopic examination revealed that these small dots were acervuli, which were 100 to 300 μm in diameter, developing beneath the epidermis and becoming erumpent with age. By using routine tissue-isolation method and single-spore purification technique, four single-conidial isolates were obtained from each of four diseased leaves. These isolates formed a grayish-white colony with numerous pink spore masses on PDA at 28°C. Their mycelial radial growth rate was about 4.5 mm per day. Conidia were single-celled, hyaline, and cylindrical with an obtuse apex and protruding base; they were 12.7 to 14.2 × 4.8 to 5.9 μm in size. Conidial appressoria were irregular in shape, sepia to dark brown, solitary, and 6.9 to 8.5 × 4.6 to 5.9 μm. These morphological characteristics were consistent with the description of Colletotrichum karstii (2). The sequences of beta-tubulin gene (TUB2) and partial actin gene (ACT) of a representative isolate CAM1 were obtained by PCR amplification with primers BT2a/BT2b and ACT512F/ACT783R, respectively. These sequences were deposited in GenBank under the accession numbers of KF444947 and KF460435. BLAST searches showed a 99% homology with the TUB2 and ACT sequences of C. karstii (JX625209, KC843559). Therefore, the fungus isolated from A. macrorrhiza was identified as C. karstii by morphological and molecular characteristics. Pathogenicity tests were performed on 30-day-old plants of A. macrorrhiza grown in plastic pots (0.8 L) by spraying 15 ml conidial suspension (1 × 106 conidia ml–1) of this fungus onto each plant. The control plants were sprayed only with sterile distilled water. These plants then were placed in an intelligent artificial climate incubator with 12-h photoperiod and 100% relative humidity at 24 ± 1°C. Three replicates, each with five plants, were included in a test, and the test was repeated twice. Seven days after inoculation, the inoculated plants showed necrotic lesions on leaves similar to those observed on the campus, but no symptoms were observed on any non-inoculated controls. The same fungus C. karstii was re-isolated from the infected leaves. Although C. karstii is a well-known anthracnose pathogen on some plants belonging to family Orchidaceae (2), this is the first report of the same pathogen causing anthracnose on A. macrorrhiza in Guangdong, China. References: (1) S. Li et al. PLoS ONE 8(6):e66016, 2013. (2) Y. Yang et al. Cryptogr. Mycol. 32:229, 2011.

Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lili Tang ◽  
Xixia Song ◽  
Liguo Zhang ◽  
Jing Wang ◽  
Shuquan Zhang

Industrial hemp is an economically important plant with traditional uses for textiles, paper, building materials, food and medicine (Li 1974; Russo et al. 2008; Zlas et al. 1993). In August 2020, an estimated 80% of the industrial hemp plants with leaf spots were observed in greenhouse in Minzhu town, Harbin City, Heilongjiang Province, China (45.8554°N, 126.8167°E), resulting in yield losses of 20%. Leaf symptoms began as small spots on the upper surface of leaves and gradually developed into brown spots with light yellow halos. These irregular spots expanded gradually and eventually covered the entire leaf; the center of the spots was easily perforated. To identify the pathogen, 20 diseased leaves were collected, and small sections of (3 to 5 mm) were taken from the margins of lesions of infected leaves. The pieces were sterilized with 75% alcohol for 30 s, a 0.1% mercuric chloride solution for 1 min, and then rinsed three times with sterile water. Samples were then cultured on potato dextrose agar at 28℃ in darkness for 4 days. A single-spore culture was obtained by monosporic isolation. Conidiophores were simple or branched, straight or flexuous, brown, and measured 22 to 61 μm long × 4 to 5 μm wide (n = 50). Conidia were solitary or in chains, brown or dark brown, obclavate, obpyriform or ellipsoid. Conidia ranged from 23 to 55 μm long × 10 to 15 μm wide (n = 50) with one to eight transverse and several longitudinal septa. For molecular identification (Jayawardena et al. 2019), genomic DNA of pathogenic isolate (MZ1287) was extracted by a cetyltrimethylammonium bromide protocol. Four gene regions including the rDNA internal transcribed spacer (ITS), glyceraldehyde-3-phosplate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1) and RNA polymerase II beta subunit (RPB2) were amplified with primers ITS1/ITS4, GDF1/GDR1, EF1-728F/EF1-986R and RPB2-5F/RPB2-7cR, respectively (White et al. 1990). Resulting sequences were deposited in GenBank with accession numbers of MW272539.1, MW303956.1, MW415414.1 and MW415413.1, respectively. A BLASTn analysis showed 100% homology with A. alternata (GenBank accession nos. MN615420.1, MH926018.1, MN615423.1 and KP124770.1), respectively. A neighbor-joining phylogenetic tree was constructed by combining all sequenced loci in MEGA7. The isolate MZ1287 clustered in the A. alternata clade with 100% bootstrap support. Thus, based on morphological (Simmons 2007) and molecular characteristics, the pathogen was identified as A. alternata. To test pathogenicity, leaves of ten healthy, 2-month-old potted industrial hemp plants were sprayed using a conidial suspension (1×106 spores/ml). Control plants were sprayed with sterile water. All plants were incubated in a greenhouse at 25℃ for a 16 h light and 8 h dark period at 90% relative humidity. The experiment was repeated three times. After two weeks, leaf spots of industrial hemp developed on the inoculated leaves while the control plants remained asymptomatic. The A. alternata pathogen was re-isolated from the diseased leaves on inoculated plants, fulfilling Koch's postulates. Based on morphology, sequencing, and pathogenicity test, the pathogen was identified as A. alternata. To our knowledge, this is the first report of A. alternata causing leaf spot disease of industrial hemp (Cannabis sativa L.) in China and is worthy of our attention for the harm it may cause to industrial hemp production.


Plant Disease ◽  
2021 ◽  
Author(s):  
Sumyya Waliullah ◽  
Greg E. Fonsah ◽  
Jason Brock ◽  
Yonggang Li ◽  
Emran Ali

Crown rot is one of the most damaging disease of banana fruit characterized by rot and necrosis of crown tissues. In severe cases, the disease can spread to the pedicel and banana pulp. Crown rot can be infected by several common fungi, including Lasiodiplodia theobromae, Musicillium theobromae, Colletotrichum musae, and a complex of Fusarium spp. and lead to softening and blackening of tissues (Lassois et al., 2010; Kamel et al., 2016; Triest et al., 2016; Snowdon, 1990). In November 2020, typical crown rot of banana fruits (cv. Pisang Awak, belonging to the tetraploid AABB genome) were observed from UGA Banana Research 12 Plots, Tifton, GA, with incidence rates of 15%. Initial symptoms appeared in the infected crown of green banana fruits. As the infection progressed, the crown tissues became blackened and softened, followed by an internal development of infection affecting the peduncle and the fruit, triggered early ripening of bananas. At last, the development of necrosis on the pedicels and fruits appeared and caused the fingers to fall off. To identify the pathogen, tissue pieces (~0.25 cm2) from the infected crown and pedicles were surface-sterilized in a 10% bleach solution for 1 min, followed by 30 s in 70% EtOH. The disinfected tissues were rinsed in sterile water 3 times and cultured on potato dextrose agar (PDA) amended with 50 µg/ml streptomycin at 25°C in the dark for 5–10 days. Isolates of the pathogen were purified using the single-spore isolation method (Leslie and Summerell 2006). Colonies on PDA produced fluffy aerial mycelium and developed an intense purple pigment when viewed from the underside. A range of colony pigmentation and growth rates were observed among the isolates. The microconidia were ovoid, hyaline, or ellipse in shape. The morphological features of the isolates were identified as Fusarium proliferatum (Leslie and Summerell, 2006). To further identify the isolates, genomic DNA was extracted from a representative isolate. And the internal transcribed spacer (ITS) region, the partial elongation factor (TEF1-α) gene and the β-tubulin gene (TUB2)were amplified and sequenced using the primers ITS1/ITS4 (Yin et al. 2012), EF-1 /EF-2 (O’Donnell et al. 1998) and B-tub1 /B-tub2 (O’Donnell and Cigelnik, 1997), respectively. The amplicons were sequenced and deposited in NCBI (accessions no. MZ292989, MZ293071 for ITS: MZ346602, MZ346603 for TEF1-α and MZ346600 and MZ346601 for B-tub). The ITS, TEF1-α, and B-tub sequences of the isolates showed 100% sequence similarity with Fusarium proliferatum isolates (accessions no. MT560212, LS42312, and LT575130, respectively) using BLASTn in Genbank. For pathogenicity testing, three whole bunched bananas sterilized with 10% bleach solutions and washed by sterilized water, were cut into 5 bananas per brunch. The cut surface of the banana crown was inoculated with conidial suspension (1.0 × 107 cfu/ml) of the pathogen with pipette tips. Equal number of bananas were treated with sterilized water in the same volume as a control. All bananas were sealed in a plastic bag and incubated at 25°C. After 7 days post inoculation, all inoculated bananas showed initial crown rot symptoms while no symptoms were observed on the control bananas. The fungus was re-isolated from the symptomatic tissues of infected bananas and confirmed to be genetically identical to F. proliferatum of the original inoculated strains according to morphological characteristics and molecular identification, fulfilling Koch’s postulates. To the best of our knowledge, this is the first report of F. proliferatum causing crown rot on bananas in Georgia, USA.


Plant Disease ◽  
2021 ◽  
Author(s):  
Tianning Zhang ◽  
Huanhuan Liu ◽  
Qingni Song ◽  
Jun Liu ◽  
Qingpei Yang ◽  
...  

Sweet viburnum [Viburnum odoratissimum Ker-Gawl. var. awabuki (K. Koch) Zabel ex Rumpl.] belonging to the family Adoxaceae, is a medical and landscape plant, native to Korea (Jeju Island), Taiwan, and Japan (Edita 1988). In June and September 2019, leaf spots were observed on approximately 65% to 80% of sweet viburnum plants in a hedgerow located in Fenghe Xincheng District (28°41'52.9"N 115°52'14.3"E) in Nanchang, China. Initial symptoms of disease appeared as dark brown spots surrounded by red halos (Figure 1 A), which expanded irregularly. Finally, the center of the lesions desiccated and became light-brown, surrounded by a deep-red halos (Figure 1 B). Ten leaf samples with typical symptoms were collected and washed with tap water for about 15 min. The tissue between the healthy and necrotic area (ca. 4 mm × 4 mm) was cut with a sterile scalpel and surface sterilized with 70% alcohol for 45 s, 2% NaClO for 2 min, washed in sterile deionized water three times, dried on sterilized filter paper, then placed in Petri dishes and incubated at 25℃ in the dark. After 3 to 5 days, the hyphal tips from the edges of growing colonies were transferred to fresh PDA dishes. Eventually, 54 fungal isolates were obtained and, of these, 39 isolates were identical in their morphological characteristics. Morphological analysis was performed according with Ellis (1971). The isolate S18, chosen as representative, formed a gray to grayish brown colony with concentric circleson PDA, and a diameter of 8.5 to 9 cm after 7 days incubation at 25℃ (Figure 1 G). Conidia were hyaline, straight or slightly curved, needle shaped, truncate at the base, and acuminate at the tip, with 2 to 6 pseudosepta, 18.90 to 38.38 µm (avg. = 27.51 µm) × 1.64 to 4.50 µm (avg. = 2.60 µm) (n = 36) (Figure 1 H). The genes of fungal isolates (i.e., ITS, tub2 and ACT) were amplified with ITS4/ITS5 for ITS (White, Bruns et al. 1990), Bt2a/Bt2b for tub2 (Glass and Donaldson 1995) and ACT783R/ACT512F for ACT (Carbone and Kohn 1999) and sequenced. The sequences were deposited in GenBank (MW165772 for ITS, MW175900 for ACT and MW168659 for tub2), which showing greater than 99.1% similarity to multiple C. cassiicola accessions, respectively. Pathogenicity tests were performed on healthy leaves in field by inoculating surface-sterilized mature leaves with puncture wound (Figure C) and non-wounded young leaves with 20 µL of a conidial suspension (105 conidia ml-1) (Figure F and G) at 26℃. After 4 to 7 days, all inoculated leaves reproduced similar symptoms as observed initially in the field (Figure 1 C, E and F). To fulfill Koch’s postulates, the fungus was isolated on PDA from the margins of leaf spots on inoculated leaves and confirmed as C. cassiicola by morphological characters and ITS gene sequencing. Previously, C. cassiicola was reported as an endophyte on Viburnum spp. and Viburnum odoratissimum (Alfieri et al. 1994). More recently, C. cassiicola has been reported as a pathogen of many plant species in China, such as kiwifruit (Cui, Gong et al. 2015), American sweetgum (Mao, Zheng et al. 2021), castor bean (Tang, Liu et al. 2020), and holly mangrove (Xie, He et al. 2020). To our knowledge, this is the first report of leaf spot disease on sweet viburnum caused by C. cassiicola in China and the precise identification of the causal agent will be useful for its management.


Plant Disease ◽  
2021 ◽  
Author(s):  
Wang Hanyi ◽  
Hou Xiuming ◽  
Xueming Huang ◽  
Meng Gao ◽  
Tingting Chen ◽  
...  

Bletilla striata (Thunb.) Rchb. f. (Orchidaceae family, known as Baiji in Chinese) is a perennial herb and has been traditionally used for hemostasis and detumescence in China. In April of 2020, a leaf spot disease on B. striata was observed in plant nurseries (∼0.2 h) in Guilin, Guangxi Province, China. Approximately 20% of the plants were symptomatic, of which 150 plants were randomly selected for investigation. Initial symptoms include the appearance of small, circular or irregular light brown spots, randomly scattered on the edges and surfaces of the leaves, which progressively expand into large, suborbicular or irregular-shaped dark brown, necrotic areas. At the severe stage, the lesions coalesced into large necrotic areas and ultimately resulted in leaf abscission. To isolate the pathogen, three representative plants exhibiting symptoms were collected from the nurseries. Leaf tissues (5 × 5 mm) were cut from the margin of necrotic lesions (n = 18), surface-disinfected in 1% sodium hypochlorite (NaOCl) solution for 2 min, then rinsed three times in sterile water before isolation. The tissues were plated on potato dextrose agar (PDA) medium, and incubated at 28°C (12-h photoperiod) for 3 days. Hyphal tips from recently germinated spores were transferred to PDA to obtain pure cultures. Nine fungal isolates with similar morphological characteristics were obtained. Three single-spore isolates, BJ23.1, BJ55.1, and BJ91.3, were subjected to further morphological and molecular characterisation. Colonies on PDA plates were villose, had a dense growth of aerial mycelia and appeared white (1A1) to yellowish white (3A2). Macroconidia were smooth, hyaline, straight to slightly curved, usually contained three or five septa, and measuring 23.3 to 42.1 × 3.0 to 6.2 μm (mean ± SD: 31.2 ± 5.1 × 4.2 ± 0.6 μm, n = 50). Microconidia were generally cylindrical, straight to slightly curved, aseptate, and measuring 7.2 to 18.8 × 2.5 to 4.3 μm (mean ± SD: 12.1 ± 2.8 × 3.3 ± 0.5 μm, n = 62). Morphological characteristics are similar to those of F. commune (Skovgaard et al. 2003). For molecular identification, the genomic DNA of the isolates BJ23.1, BJ55.1, and BJ91.3 were extracted using the CTAB method (Guo et al. 2000). The internal transcribed spacer (ITS) region of rDNA, partial translation elongation factor-1 alpha (TEF-1α), RNA polymerase second largest subunit (RPB2), and the mitochondrial small subunit rDNA (mtSSU) genes were amplified using primer pairs [ITS1/ITS4 (White et al. 1990), EF-1/EF-2 (O’Donnell et al. 1998), and 5f2/11ar (Liu et al. 1999, Reeb et al. 2004), MS1/MS2 (Li et al. 1994), respectively]. The obtained sequences were deposited in NCBI GenBank under the following accession numbers: ITS (MZ424697 to MZ424699), TEF-1α (MZ513467 to MZ513469), RPB2 (MZ513473 to MZ513475), and mtSSU (MZ513470 to MZ513472). BLAST® analysis of the deposited sequences showed 99 to 100% identity with those of F. commune present in GenBank (Accession numbers: DQ016205, MH582348, MH582181, AF077383). In addition, a phylogenetic analysis using concatenated sequences of ITS, TEF-1α, mtSSU genes showed that BJ23.1, BJ55.1, and BJ91.3 located on the same clade with strains of F. commune. Therefore, based on morphological and molecular characteristics, the isolates were identified as F. commune (Skovgaard et al. 2003, Stewart et al. 2006). Pathogenicity was tested using 1.5-year-old B. striata plants. Healthy leaves on plants were inoculated with 5 × 5 mm mycelial discs of strains BJ23.1, BJ55.1, and BJ91.3 from 3-day-old PDA cultures, each isolate was inoculated onto three plants; three other plants inoculated with sterile PDA discs served as controls. All plants were enclosed in transparent plastic bags and incubated in a greenhouse at 28°C for 14 days (12-h photoperiod). Three days post-inoculation, leaf spot symptoms appeared on the inoculated leaves. No symptoms were detected on control plants. Experiments were replicated three times with similar results. To fulfill Koch’s postulates, F. commune was consistently re-isolated from symptomatic tissue and confirmed by morphology and sequencing, whereas no fungus was isolated from the control plants. F. commune has been reported to cause diseases on some plants, including sugarcane (Wang et al. 2018), maize (Xi et al. 2019) and Wax Gourd (Zeng et al. 2020). To our knowledge, this is the first report of F. commune causing leaf spot disease on B. striata in China. Identification of this pathogen provides the information for further studies to develop management strategies to control the disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yun-fei Mao ◽  
Xiang-rong Zheng ◽  
Fengmao Chen

American sweetgum (Liquidambar styraciflua L.) is a forest plant native to North America, which has been introduced into other countries due to its ornamental and medicinal values. In June 2019, symptoms of leaf spots on sweetgum were observed in a field (5 ha) located in Xuzhou, Jiangsu Province, China. On this field, approximately 45% of 1,000 trees showed the same symptoms. Symptoms were observed showing irregular or circular dark brown necrotic lesions approximately 5 to 15 mm in diameter with a yellowish margin on the leaves. To isolate the pathogen, diseased leaf sections (4×4mm) were excised from the margin of the lesion, surface-sterilized with 0.1% NaOCl for 90 s, rinsed 4 times in sterile distilled water, air dried and then transferred on potato dextrose agar (PDA) medium at 25°C in the dark. Pure cultures were obtained by monospore isolation after subculture. Ten purified isolates, named FXI to FXR, were transferred to fresh PDA and incubated as above to allow for morphological and molecular identification. After 7 days, the aerial mycelium was abundant, fluffy and exhibited white to greyish-green coloration. The conidia were dark brown or olive, solitary or produced in chains, obclavate, with 1 to 15 pseudosepta, and measured 45 to 200µm  10 to 18µm. Based on morphological features, these 10 isolates were identified as Corynespora cassiicola (Ellis et al. 1971). Genomic DNA of each isolate was extracted from mycelia using the cetyltrimethylammonium bromide (CTAB) method. The EF-1α gene and ITS region were amplified and sequenced with the primer pairs rDNA ITS primers (ITS4/ITS5) (White et al. 1990) and EF1-728F/EF-986R (Carbone et al.1999) respectively. The sequences were deposited in GenBank. BLAST analysis revealed that the ITS sequence had 99.66% similarity to C. cassiicola MH255527 and that the EF-1α sequence had 100% similarity to C. cassiicola KX429668A. maximum likelihood phylogenetic analysis based on EF-1α and ITS sequences using MEGA 7 revealed that ten isolates were placed in the same clade as C. cassiicola (Isolate: XQ3-1; accession numbers: MH572687 and MH569606, respectively) at 98% bootstrap support. Based on the morphological characteristics and phylogenetic analyses, all isolates were identified as C. cassiicola. For the pathogenicity test, a 10 µl conidial suspension (1×105 spores/ml) of each isolate was dripped onto healthy leaves of 2-year-old sweetgum potted seedlings respectively. Leaves inoculated with sterile water served as controls. Three plants (3 leaves per plant) were conducted for each treatment. The experiment was repeat twice. All seedlings were enclosed in plastic transparent incubators to maintain high relative humidity (90% to 100%) and incubated in a greenhouse at 25°C with a 12-h photoperiod. After 10 days, leaves inoculated with conidial suspension of each isolate showed symptoms of leaf spots, similar to those observed in the field. Control plants were remained healthy. In order to reisolate the pathogen, surface-sterilized and monosporic isolation was conducted as described above. The same fungus was reisolated from the lesions of symptomatic leaves, and its identity was confirmed by molecular and morphological approaches, thus fulfilling Koch’s postulates. Chlorothalonil and Boscalid can be used to effectively control Corynespora leaf spot (Chairin T et al.2017). To our knowledge, this is the first report of leaf spot caused by C. cassiicola on L. styraciflua in China.


Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 287-287 ◽  
Author(s):  
D. J. Vakalounakis ◽  
E. A. Markakis

During the 2011 to 2012 crop season, a severe leaf spot disease of cucumber (Cucumis sativus) cv. Cadiz was noticed on crops in some greenhouses in the Goudouras area, Lasithi, Crete, Greece. Symptoms appeared in late winter, mainly on the leaves of the middle and upper part of the plants. Initially, small necrotic pinpoint lesions with white centers, surrounded by chlorotic halos, 1 to 3 mm in diameter, appeared on the upper leaf surfaces, and these progressively enlarged to spots that could coalesce to form nearly circular lesions up to 2 cm or more in diameter. Stemphylium-like fructifications appeared on necrotic tissue of older lesions. Severely affected leaves became chlorotic and died. No other part of the plant was affected. Small tissue pieces from the edges of lesions were surface disinfected in 0.5% NaClO for 5 min, rinsed in sterile distilled water, plated on acidified potato dextrose agar and incubated at 22 ± 0.5°C with a 12-h photoperiod. Stemphylium sp. was consistently isolated from diseased samples. Colonies showed a typical septate mycelium with the young hyphae subhyaline and gradually became greyish green to dark brown with age. Conidiophores were subhyaline to light brown, 3- to 10-septate, up to 200 μm in length, and 4 to 7 μm in width, with apical cell slightly to distinctly swollen, bearing a single spore at the apex. Conidia were muriform, mostly oblong to ovoid, but occasionally nearly globose, subhyline to variant shades of brown, mostly constricted at the median septum, 22.6 ± 6.22 (11.9 to 36.9) μm in length, and 15.1 ± 2.85 (8.3 to 22.6) μm in width, with 1 to 8 transverse and 0 to 5 longitudinal septa. DNA from a representative single-spore isolate was extracted and the internal transcribed spacer region (ITS) of ribosomal DNA (rDNA) was amplified using the universal primers ITS5 and ITS4. The PCR product was sequenced and deposited in GenBank (Accession No. JX481911). On the basis of morphological characteristics (3) and a BLAST search with 100% identity to the published ITS sequence of a S. solani isolate in GenBank (EF0767501), the fungus was identified as S. solani. Pathogenicity tests were performed by spraying a conidial suspension (105 conidia ml–1) on healthy cucumber (cv. Knossos), melon (C. melo, cv. Galia), watermelon (Citrullus lanatus cv. Crimson sweet), pumpkin (Cucurbita pepo, cv. Rigas), and sponge gourd (Luffa aegyptiaca, local variety) plants, at the 5-true-leaf stage. Disease symptoms appeared on cucumber and melon only, which were similar to those observed under natural infection conditions on cucumber. S. solani was consistently reisolated from artificially infected cucumber and melon tissues, thus confirming Koch's postulates. The pathogenicity test was repeated with similar results. In 1918, a report of a Stemphylium leaf spot of cucumber in Indiana and Ohio was attributed to Stemphylium cucurbitacearum Osner (4), but that pathogen has since been reclassified as Leandria momordicae Rangel (2). That disease was later reported from Florida (1) and net spot was suggested as a common name for that disease. For the disease reported here, we suggest the name Stemphylium leaf spot. This is the first report of a disease of cucumber caused by a species of Stemphylium. References: (1) C. H. Blazquez. Plant Dis. 67:534, 1983. (2) P. Holliday. Page 243 in: A Dictionary of Plant Pathology. Cambridge University Press, Cambridge, UK, 1998. (3) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (4) G. A. Osner. J. Agric. Res. 13:295, 1918.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chaodong Qiu ◽  
Yingying Zhang ◽  
Zhenyu Liu

Sweet viburnum [Viburnum odoratissimum (L.) Ker Gawl] is an evergreen shrub mainly cultivated along roadsides in urban landscapes and also in parks and residential areas. A foliar disease occurred on about 40% of sweet viburnum plants near Anhui Grand Theatre, Anhui Province of China in June 2019. In early stages of sweet viburnum infection, the symptoms appeared as small brown spots ranged in length from 2 to 3 millimeters on the leaves. The spots developed on the upper, middle, and lower leaves of the plant, however, the upper leaves got more severely affected. As the disease develops, the spots enlarged and became rectangular or oval, brown to dark-brown, and their centers became ashen gray. In later stages of infection, the diseased leaves became wilting. Diseased leaves were surface disinfested and three small sections (2-3 mm2) were cut from the margin of the lesions. Sections were placed in 1.5% NaClO for 2 min, submerged in three changes of sterilized distilled water for 1 min each, placed onto potato dextrose agar (PDA) medium amended with 50 μg/ml of ampicillin and kanamycin, and incubated at 25℃ for 3 days. The mycelium from the leading edge of colonies growing from the tissue was sub-cultured onto a PDA plate for 3 days, followed by spore induction (Simmons 2007) and single spore isolation to obtain a pure culture of the putative pathogen. Colonies of one single spore isolate HF0719 were rounded, grayish white with dense aerial mycelium viewed from above and dark brown viewed from below. On potato carrot agar (PCA) medium, conidiophores were branched or occasionally unbranched. On branched conidiophores, conidia were in dwarf tree-like branched chains of 2-5 conidia. On unbranched conidiophores, conidia were simple or in chains of 2-8 conidia. Conidia were light brown or dark brown, ovoid, ellipsoidal to fusiform, and ranged in size from 7 to 26.5 × 4.5 to 11 μm with an average size of 16 × 7 µm based on 500 spore observations, with one beak and 1-7 transverse, 0-3 longitudinal, and 0-3 oblique septa. Beaks were ranged in (1.5-)2-10(-16) μm long. Based on cultural and morphological characteristics, isolate HF0719 was identified as Alternaria spp. (Simmons 2007). For molecular identification, total genomic DNA was isolated from mycelia collected from 7 day-old colonies of isolate HF0719 using the fungal genomic DNA extraction kit (Solarbio, Beijing, China). Fragments of five genes, including those encoding glyceraldehyde-3-phosphate dehydrogenase (gpd), plasma membrane ATPase, actin, calmodulin, and the Alternaria major allergen (Alt a1) regions of isolate HF0719 were amplified and sequenced using primer pairs gpd1/gpd2 (Berbee et al. 1999), ATPDF1/ATPDR1, ACTDF1/ACTDR1, CALDF1/CALDR1 (Lawrence et al. 2013), and Alt-for/Alt-rev (Hong et al. 2005), respectively. The obtained nucleotide sequences were deposited into GenBank as accession numbers: gpd, MT614365; ATPase, MT614364; actin, MT614363; calmodulin, MN706159; and Alt a1, MN304720. Phylogenetic tree using a maximum likelihood bootstrapping method based on the five-gene combined dataset in the following order: gpd, ATPase, actin, calmodulin, Alt a1 of HF0719 and standard strains representing 120 Alternaria species (Lawrence et al. 2013) was constructed. Isolate HF0719 formed a separate branch. On the basis of morphological characteristics and phylogenetic pattern, isolate HF0719 was identified as Alternaria spp.. A pathogenicity test was performed by rubbing 32 healthy leaves of six 5-year-old sweet viburnum plants with a cotton swab dipped in spore suspension containing 2.6 × 106 spores/ml, following leaf surface disinfection with 70% ethanol in the open field. Sterilized distilled water was used as control. The average air temperature was about 28℃ during the period of pathogenicity test. Eleven days after inoculation, 100% of inoculated leaves showed the leaf spot symptom identical to symptoms observed in the field. Control leaves were symptomless. The experiment was done three times. The re-isolated pathogen from the leaf lesion had the same morphological and molecular characteristics as isolate HF0719, thus satisfying Koch’s postulates. The genus Alternaria has been reported to cause leaf spot on sweet viburnum in Florida, USA (Alfieri et al. 1984). To our knowledge, this is the first report of Alternaria spp. causing leaf spot on sweet viburnum in China, a highly valued ornamental plant. Our findings will contribute to monitoring and adopting strategies for manage leaf spot disease on sweet viburnum.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 571-571 ◽  
Author(s):  
B.-J. Li ◽  
A.-L. Chai ◽  
X.-Y. Zhang

Fragrant plantain lily [Hosta plantaginea (Lam.) Aschers.] is an easily grown herbaceous perennial plant valued for its decorative foliage and dainty colorful flowers. From 2009 to 2011, a leaf spot disease of H. plantaginea was observed in Yuyuantan Park in Beijing, China (116°25′ E, 39°55′ N). The leaf spots began as small, irregular, circular, brown lesions in the middle or on the margin of leaves, which enlarged gradually up to 1 to 20 mm in diameter and were circular or irregular and brown to dark brown surrounded by yellowish borders. Occasionally, some spots cracked under dry conditions. Symptomatic leaf tissues were surface-sterilized in 1% NaOCl for 2 min, washed three times with distilled water, and then placed on potato dextrose agar (PDA). Colonies on PDA at 25°C for 7 days were grayish brown and cottony. Mycelia were hyaline to grey, septate, branched, and 2 to 7 μm wide. Acervuli were dark brown to black and 198 to 486 μm in diameter, averaging 278.5 μm. Setae were pale brown to dark brown, 2 to 4 septa, 70.0 to 120.3 × 2.5 to 5.1 μm, base cylindrical, and narrower towards the apex. Conidiophores were unicellular, hyaline, phialidic, and 5.0 to 13.5 × 1.5 to 2.8 μm. Conidia were hyaline, aseptate, falcate, apices acute, oil globules, and 16.0 to 25.2 × 2.6 to 5.0 μm. Appressoria were spherical, ovate or obclavate, pale to dark brown, edge usually entire, and 9.5 to 15.5 × 6.5 to 11.5 μm. Morphological characteristics of the fungus were similar to those of Colletotrichum capsici (Syd.) Butler & Bisby (2). To validate Koch's postulates, pathogenicity tests were performed by spraying leaves of 20 healthy potted H. plantaginea (60-day-old plants) with a 106 conidia/ml aqueous suspension. Control plants were inoculated with sterile water. Plants were put into a glass cabinet for 48 h after inoculation and maintained at 25°C, relative humidity 98%. Then the plants were moved out and incubated in greenhouse at 10 to 25°C. After 10 days, all inoculated plants showed typical symptoms, whereas water sprayed controls remained healthy. C. capsici was consistently re-isolated from these lesions. The re-isolated fungus showed the same morphological characteristics as described above. Genomic DNA was extracted from the original isolate and the re-isolate from the pathogenicity test. PCR amplification of the internal transcribed spacer (ITS) regions from ribosomal DNA was performed with primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). PCR products of 513 bp were sequenced. There was 100% nucleotide identity for sequences of the original isolate and the re-isolate. The sequence was submitted to GenBank (Accession No. HM063417.1). BLAST analysis of the fungal sequence resulted in 100% identity to the sequence of C. capsici (Accession No. JX867217.1). Isolates have been deposited at the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences. To our knowledge, this is the first report of anthracnose caused by C. capsici on H. plantaginea in China (1). Its confirmation is a significant step toward management recommendations for growers. References: (1) D. F. Farr and A. Y. Rossman, Fungal Databases. Syst. Mycol. Microbiol. Lab. ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , August 2013. (2) J. E. M. Mordue. CMI Description of Pathogenic Fungi and Bacteria. Commonwealth Mycol. Inst., Kew, UK, 1971.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaojie Zhang ◽  
Cheng Guo ◽  
Chunming Wang ◽  
Tianwang Zhou

Maize (Zea Mays L.) is one of the main crops in Ningxia Province, China, and stalk rot has become a serious disease of maize in this area. Infected plants showed softening of the stalks at lower internodes, which lodged easily and died prematurely during grain filling, and the pith tissue internally appeared to be disintegrating and slightly brown to reddish. In September 2018, symptomatic tissue was collected from seventeen locations in Ningxia. The incidence ranged from 5% to 40% in surveyed fields, reaching as high as 86% in certain plots. The discolored stalk pith tissues from the lesion region were cut into small pieces (approximately 0.5 × 0.2 cm), superficially disinfected with 75% ethanol for 1 min and rinsed three times with sterile water before plating on potato dextrose agar (PDA) medium with chloromycetin. The purified strains were obtained by single-spore separation and transferred to PDA and carnation leaf agar (CLA) medium. Morphological and molecular characteristics confirmed the presence of nine Fusarium species in these samples, including Fusarium graminearum species complex and Fusarium verticillioides. Four isolates of Fusarium nelsonii were recovered from samples collected in Shizuishan and Wuzhong. On PDA plates, the floccose to powdery, white to rose-colored aerial mycelia were produced and covered plates after 8 days of incubation, producing abundant mesoconidia and chlamydospores. Mesoconidia were fusiform or lanceolate until slightly curved with 0-3 septa, and chlamydospores were initially smooth and transparent, and became verrucous and light brown. Macroconidia produced in CLA were straight or curved and falcate, usually having 3-5 septa, with beak-shaped strongly curved apical cells and foot-shaped basal cells. Two isolates (SS-1-7 and ZY-2-2) were selected for molecular identification, and the total DNA was extracted using a fungal genomic DNA separation kit (Sangon Biotechnology, Shanghai, China). Sequence comparison of EF-1α (GenBank accession numbers MW294197 and MW294198) and RPB2 (Accession MW294176 and MW294177) genes showed 97% homology with the sequences of F. nelsonii reported in GenBank (accession MN120760 for TEF and accession MN120740 for RPB2). Pathogenicity tests with two isolates (SS-1-7 and ZY-2-2) were performed by individually inoculating five 10-leaf stage maize plants at between the 2nd and 3rd stem nodes from the soil level with 20 μl conidial suspension at a concentration of 106 conidia/ml as described by Zhang et al. (2016). Five maize plants inoculated with sterile water were used as controls. The inoculated plants were kept at 25 ± 0.5°C in the greenhouse with a photoperiod of 12 h. After 30 days, all plants inoculated with the conidial suspension formed an internal dark brown necrotic area around the inoculation site, whereas the control plants showed no symptoms. The pathogen was re-isolated from the necrotic tissue of the inoculated plants and identified by morphological characteristics as F. nelsonii. This species was first described by Marasas et al. (1998), and it is expanding its host range and has been isolated from sorghum, Medicago, wheat, and cucumber (Ahmad et al. 2020). The pathogen should be paid more attention owing to a serious risk of trichothecene and aflatoxin contamination (Astoreca et al. 2019; Lincy et al. 2011). To our knowledge, this is the first report of maize stalk rot caused by F. nelsonii in China. References: Ahmad, A., et al. 2020. Plant disease.1542 https://doi.org/10.1094/PDIS-11-19-2511-PDN Astoreca, A. L., et al. 2019. Eur. J. Plant Pathol. 155:381. Lincy, S. V., et al. 2011. World J. Microbiol. Biotechnol. 27:981. Marasas, W. F. O., et al. 1998. Mycologia 90:505. Zhang, Y., et al. 2016. PLoS Pathog. 12:e1005485. Funding: This research was financially supported by National R & D Plan of China (No.2019QZKK0303); Ningxia Agriculture and Forestry Academy Science and Technology Cooperation Project (DW-X-2018019)


Sign in / Sign up

Export Citation Format

Share Document