scholarly journals Occurrence of Neopestalotiopsis clavispora Causing Leaf Spot on Dendrobium officinale in China

Plant Disease ◽  
2022 ◽  
Author(s):  
Peng Cao ◽  
Yuhui Fang ◽  
Zikui Zheng ◽  
Xia Han ◽  
Huixi Zou ◽  
...  

Dendrobium officinale Kimura L., an endangered orchid plant, is a rare and precious Chinese herb and widely used to prepare Chinese traditional medicine (Zheng et al. 2005). In August 2021, significant indications of an unknown leaf spot disease were observed on greenhouse-grown D. officinale in Yueqing of Wenzhou (28.39°N, 121.04°E), Zhejiang Province, China, the main producing location of this orchid plant. Approximately twenty percent of plants surveyed showed typical infection symptoms. Initially, the symptoms appeared as small, circular black spots. As the disease developed, the center of the lesions was sunken with a black border. To determine the causal agent, 10 symptomatic plant samples were collected and all pieces from symptomatic plant leaves were used for isolating pathogen. Tissues between healthy and necrotic area were cut into pieces (5 × 5 mm, n=10), disinfected with 10% sodium hypochlorite for 1 minute, rinsed 3 times with sterile water, and dried on sterile tissue. Samples were then placed on potato dextrose agar medium (PDA) for 1 piece per plate, and incubated at 25℃ in a dark biochemical incubator. After 3 days, hyphal tips growing from the disinfected tissues were individually transferred to new PDA plates and incubated at 25℃ in the dark. Twelve same fungal isolates were obtained from all symptomatic leave fragments, then DDO11 was chosen as a representative isolate for further study. The colonies showed white aerial mycelium after 5 days culture at 25°C on PDA. Black viscous acervuli appeared and scattered on the surface of the colony after 8-12 days culture. Conidia were spindle shape, five cells, four septa, average 29.3 × 8.5 μm (n = 30; length × width). The apical and basal cells were lighter in color, and most of them were hyaline. The middle three cells were darker in color, and mostly brown. There are 2 to 4 colorless and transparent unbranched accessory filaments at the top, 32.5 µm in average length, and the basal cell has a small appendage, 9.2 µm in average length, n=30. For fungal identification to species level, Internal transcribed spacer (ITS) region, β-tubulin gene (TUB2) and translation elongation factor-1α (TEF-1α) were amplified (Qiu et al. 2020), respectively. The ITS, TUB2 and TEF-1α gene sequences of the representative isolate DDO11 were deposited in NCBI GenBank nucleotide database with accession numbers OK631881, OK655895 and OK655896, respectively. BLASTn analysis respectively showed 100%, 100% and 99.6% nucleotide sequence identity with Neopestalotiopsis clavispora strain accessions MG729690, MG740736 and MH423940, which indicated that the pathogen belonged N. clavispora. A maximum-likelihood phylogenetic analysis based on multi-locus sequence (ITS, TUB2, and TEF-1α) using MEGA X showed the similar result (Kumar et al. 2018). To verify pathogenicity, thirty 1-year-old healthy D. officinale plants of cultivar Yandang1 were used for inoculation tests. Spores of N. clavispora DDO11 were produced on PDA for 7 days at 28°C and washed with sterile distilled water, and the concentrations were adjusted to 1 × 106 spores/ml using a hemocytometer. Fifteen surface disinfected healthy plants were inoculated by spraying the suspension (2 ml, 1 × 106 spores/ml) and covered with plastic bags for 24 h, and another 15 plants treated with sterile distilled water were used as control. The plants were placed in a humidified chamber (>95% relative humidity) at 25°C for 48 h after inoculation and kept in a growth chamber (Kiangnan, China) at 25°C with 12-h day/night cycle for 8 days (Cao et al. 2019). All inoculated leaves showed symptoms identical to those observed in the field. No disease occurred on the controls. The Neopestalotiopsis isolate was reisolated from the symptomatic leaves, and species identification was confirmed by the morphological and molecular method described above. N. clavispora has been reported to cause diseases on a variety of plants all over the world, such as strawberry (Gilardi et al. 2019), blue berry (Shi et al. 2021), Syzygium cumini (Banerjee et al. 2020), Macadamia (Qiu et al. 2020), and so on. To the best of our knowledge, this is the first report of N. clavispora causing leaf spot on D. officinale in China. This report will help us to recognize the leaf spot disease of D. officinale and establish a foundation for future studies on N. clavispora to address effective management strategies.

Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 458-458 ◽  
Author(s):  
Z. W. Luo ◽  
F. He ◽  
H. Y. Fan ◽  
X. H. Wang ◽  
M. Hua ◽  
...  

Pineapple (Ananas comosus (L.) Merr.) is an important perennial monocotyledonous plant that serves as an important fruit crop globally and is also produced in the Hainan Province of China where production in 2009 was 296,600 t. In July 2009, atypical symptoms of a leaf spot disease were observed on mature pineapple leaves in Chengmai County; approximately 15% of plants propagated from suckers became symptomatic after 150 to 300 days, eventually causing a 3 to 10% yield loss. In the initial infection stage, grayish white-to-yellowish white spots emerged on the leaf surfaces that ranged from 1.0 to 2.4 × 0.3 to 0.7 cm; black specks were not always present in the spots. Leaf spots also had distinctive light brown-to-reddish brown banding pattern on the edges. Several spots would often merge to form large lesions, 6.5 to 15.4 × 2.5 to 5.6 cm, covering more than 67% of the leaf surface, which can lead to death of the plant. Infected pineapple leaves collected from an orchard of Chengmai County were surface sterilized (75% ethanol for 30 s, 0.1% HgCl2 for 2 min, and rinsed three times in sterile distilled water). Leaf pieces were placed on potato dextrose agar medium and then incubated at 25°C. The emerging fungal colonies were grayish white to brown. Similar strains were obtained from Qionghai City and Wanning City subsequently. Two isolates, ITF0706-1 and ITF0706-2, were used in confirmation of the identity of the pathogen and in pathogenicity tests. Colonies were fast growing (more than 15 mm per day at 25 to 30°C) with dense aerial mycelia. Conidia were fusiform, pyriform to oval or cylindrical, olive brown to dark brown, 3 to 10 septate (typically 5 to 8), 33.2 to 102.5 × 9.0 to 21.3 μm, with a strongly protruding hilum bulged from the basal cell, which were similar to the Type A conidia described by Lin et al. (3). The strains were subjected to PCR amplification of the internal transcribed spacer (ITS)1-5.8S-ITS2 regions with universal primer pair ITS1/ITS4. The ITS sequence comparisons (GenBank Accession Nos. JN711431 and JN711432) shared between 99.60 and 99.83% identity with the isolate CATAS-ER01 (GenBank Accession No. GQ169762). According to morphological and molecular analysis, the two strains were identified as Exserohilum rostratum (Drechs.) Leonard & Suggs. Pathogenicity experiments were conducted five times and carried out by spraying a conidial suspension (105 CFU/ml) on newly matured leaves of healthy pineapple plants; plants sprayed with sterile water served as the negative control. Plants were incubated in the growth chamber at 20 to 25°C. Symptoms of leaf spot developed on test plants 7 days after inoculation while the control plants remained asymptomatic. Koch's postulates were fulfilled with the reisolation of the two fungal strains. Currently, E. rostratum is one of the most common pathogens on Bromeliads in Florida (2) and has been reported on Zea mays (4), Musa paradisiacal (3), and Calathea picturata (1) in China, but to our knowledge, this is the first report of leaf spot disease caused by E. rostratum on pineapple in Hainan Province of P.R. China. References: (1) L. L. Chern et al. Plant Dis. 95:1033, 2011. (2) R. M. Leahy. Plant Pathol. Circ. No. 393. Florida Department of Agriculture and Consumer Services Division of Plant Industry, 1999. (3) S. H. Lin et al. Australas. Plant Pathol. 40:246, 2011. (4) J. N. Tsai et al. Plant Pathol. Bull. 10:181, 2001.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Aabid . ◽  
Sabiha Ashraf ◽  
Hilal A. Malik ◽  
Rakshanda Zargar ◽  
Shaheena A. Nagoo ◽  
...  

Septoria lycopersici responsible for Septoria leaf spot disease was observed on the leaves of tomato. Septoria lycopersici was isolated and completion of Koch’s postulates confirmed that the fungus was causal agent of the leaf spot disease. The fungus was cultured on potato dextrose agar medium. The fungus was very slow growing with 8-12 mm radial growth as recorded after 30 days of incubation. The fungus produced off white, irregular, hardened blackish mycelial growth oozing spore mass from pycnidia. Pycnidia were dark brown to black, globose to sub globose, ostiolated and thick walled. Pycnidiospores were filiform, straight with pointed to rounded ends.


Plant Disease ◽  
2021 ◽  
Author(s):  
Taixiang Chen ◽  
Yangju Qi ◽  
Lihua Wang ◽  
Chunjie Li

Common buckwheat (Fagopyrum esculentum Moench), a dicotyledonous plant in family Polygonaceae, is recognized as a valuable nutritional source of fatty acids, phytosterols, phenolic compounds and tocopherols. It has received increased attention as a so-called “functional food” in China. During scouting of common buckwheat in August and September 2018, unfamiliar symptoms were observed on leaves in 20 fields in Yanchi County, Ningxia, China, with 35% incidence and moderate to high severity across the field. Brown spots most commonly occurred on lower leaves of buckwheat beginning in late July. The spots were initially light brown with an irregular border and pale brown center. Older spots were almost dark brown, and often coalesced although spots were restricted by veins. Symptomatic leaf samples were collected in late-August, and washed with flowing water for 2 min. Tissue samples were excised from the margins of the lesions and sterilized with 75% ethanol for 20 s and 0.1% NaClO for 2 min, before being rinsed with sterilized water four times, dried on sterile paper towels, and cultured on Potato Dextrose Agar medium at 20 °C. After 48 to 72 h, hyphae grew from tissue pieces. The obtained isolates were purified using the single-spore isolation technique. A total of thirteen isolates were recovered and characterized. Colonies of all isolates on PDA were identical, and were pale brown to brown, velvety, with irregular borders. Hyphae were hyaline to brown, branched, septate, smooth, sometimes verruculose, 3-7 μm wide. Conidiophores were (83-297) µm×(5.5-9) µm (avg. 205 µm×8 µm, n=30), dark brown, cylindrical, straight to slightly flexuous, geniculate at the upper end, septate, single, smooth. Conidia were rostrate, obclavate, straight to slightly curved, hyaline to pale brown when immature and brown to reddish brown when mature, and measured (38-104) µm×(11-19) µm (avg. 67 µm×16 µm, n=50). End cells were often paler than middle cells and with a thick dark hilum. Based on the cultural and morphological characteristic, these isolates are preliminary identified as Bipolaris zeae (Manamgoda et al., 2014; Sivanesan, 1985). Genomic DNA of the representative isolate qyj-5A was extracted and amplified using GAPDH primers (gpd 1/2) and ITS primers (ITS 1/4) respectively. The sequence of the amplicons was compared with reference sequences. The ITS sequence (GenBank: MT645704) showed 100% (571/571bp, 564/564bp) identity with B. zeae (GenBank: KU356179 and KU571464, respectively). The GAPDH sequence (GenBank: MW426530) also showed 100% (594/594bp) identity values with B. zeae (GenBank: MF415650 and KU571468). Pathogenicity tests were performed on three healthy and asymptomic buckwheat plants, which were surface sterilized with 75% ethanol and rinsed with sterilized distilled water. The leaves were sprayed with 1×105 conidia/ml of the suspensions which contain 0.01% Tween 20 and three control plants sprayed with same volume of sterile distilled water. A strip of parafilm was wrapped around the inoculated leaves for 48 h to maintain high relative humidity. At 6 days postinoculation, all the inoculated leaves showed symptoms identical to those described above. While no symptoms were observed on the control plants. The fungus was reisolated and identified as B. zeae based on morphological features and DNA sequence analysis, it was identical to the original isolate to satisfy Koch’s postulates. B. zeae has been reported to be pathogenic on Acer truncatum (Sun et al., 2011), Helianthus tuberosus (Zhao et al., 2017) and Hemarthria altissima (Xue et al., 2016) in China. To our knowledge this is the first report of B. zeae causing leaf spot on F. esculentum in China. This fungal pathogen represents a severe threat and has the potential to cause yield losses of F. esculentum, so further research is required to define effective management strategies.


Plant Disease ◽  
2020 ◽  
Author(s):  
Xiao Fei Chen ◽  
Yanqiao He ◽  
Aomen He ◽  
Juxia He ◽  
Qiongqiong Li ◽  
...  

Amygdalus triloba (Rosaceae; previously Prunus triloba) is a deciduous, flowering shrub that is widely used in the greening and beautification of lawns, parks and courtyards in China. In late May 2019, a leaf spot disease of A. triloba was observed on approximately 35% of plants in the Xinjiang Alaer city (40˚33′20′′N, 81˚17′19′′E). The disease symptoms began as small, suborbicular, brown spots on the leaves. As the disease progressed, the spots enlarged and coalesced into large necrotic areas and resulted in premature defoliation. Leaf sections (5 x 5 mm) from infected leaves were surface - sterilized with 75% ethanol for 30 s and 0.1% HgCl2 for 1 min, rinsed three times in sterile distilled water and then incubated on potato dextrose agar (PDA). Fifteen fungal isolates showing similar morphological characteristics were obtained by single-spore isolation. On the PDA plates, all fungal colonies had a dark olive color with loose, cottony mycelium. On the potato carrot agar, the fungus formed unbranched spore chains, but occasionally formed one or two lateral branches. Conidiophores were short, hazel-colored, septae, arising singly, and measuring 15.1 to 61.8 × 1.8 to 4.2 µm (35.2 ± 1.4 × 2.3 ± 0.1 µm, n = 50). Mature conidia were ellipsoidal to ovoid with a short conical beak at the tip, light brown with zero to three longitudinal septa and one to five transverse septa, and measuring 19.3 to 30.8 × 7.2 to 12.5 µm (21.8 ± 0.3 × 9.5 ± 0.2 µm, n = 50). Based on the cultural and morphological traits, the pathogen was preliminary identified as Alternaria tenuissima (Simmons 2007). Genomic DNA was extracted from the representative isolate YALAR-1, and the internal transcribed spacer (ITS) region, the partial coding sequence of endopolygalacturonase (endoPG), the glyceradehyde -3- phosphate dehydrogenase (GAPDA), the partial region of the histone 3 (H3) genes were amplified using primers ITS1/ITS4 (White et al. 1990), PG2b/PG3a (Andrew et al. 2009), GDF1/GDR1 (Berbee et al. 1999) and H3-1a/H3-1b (Glass and Donaldson 1995), respectively. The amplicons were sequenced and deposited in GenBank [MT459807 (ITS), MT459808 (endoPG), MT459805 (GAPDA), MT459806 (H3)]. MegaBLAST analyses revealed that our ITS, endoPG, GAPDA, and H3 sequences were 99-100% identical to those of A. tenuissima isolates in GenBank [AF347032 (ITS), KP124026 (endoPG), AY278809 (GAPDA), KF997086 (H3)], confirming the identity of the pathogen as A. tenuissima. Pathogenicity tests were performed by inoculating the fungus onto healthy, mature leaves of A. triloba in the field. Twenty five leaves (five leaves/plant) were sprayed with spore suspensions (1 × 106 spores/ml) of each fungal pathogen, and the same number of leaves were sprayed with distilled water as controls. Inoculated and control leaves were covered with clear plastic bags for 3 days. The experiment was repeated three times. Twelve days after inoculation, the observed symptoms were similar to the original symptoms and the same fungal pathogen was reisolated from the inoculated leaves and identified as A. tenuissima based on morphological features and sequence analysis. The control leaves remained asymptomatic and no fungus was isolated from these leaves. Previously, a leaf spot of A. triloba caused by Alternaria brassicae was reported in Dalian, China (Xie et al. 2017). In order to control this disease effectively, further studies are needed on the biology and ecology of A. tenuissima and A. brassicae respectively. To our knowledge, this is the first report of A. tenuissima associated with leaf spot disease on A. triloba in China. In late September 2020, the diseased plant rate increased to 38% in Alaer city. If the disease control and prevention is neglected, the landscape of Alaer city will be affected seriously. So, in order to effectively control the spread of the disease, it is urgent now to study the sensitivity of pathogen to fungicide and carry out the field efficacy trials. References: Andrew, M., et al. 2009. Mycologia. 101:95. Berbee, M. L., et al. 1999. Mycologia. 91:964. Glass, N. L., and Donaldson, G. C. 1995. Appl. Environ. Microbiol. 61:1323. Simmons, E. G. 2007. Alternaria: An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands. White, T. J., et al. 1990. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. Xie, Y., et al. 2017. Liaoning Agricultural Sciences. 6: 73.


1981 ◽  
Vol 8 (1) ◽  
pp. 11-12 ◽  
Author(s):  
H. A. Melouk

Abstract Growth of Cercospora arachidicola Hori, the causal agent of early leaf spot disease on peanuts, was completely inhibited on Czapek-Dox broth medium amended with the acaricide cyhexatin (Plictran) at ≤ 73.5 μg/ml; however, at 14.7 μg/ml traces of growth occurred after 6 weeks of incubation at 27±2C and continuous fluorescent light (800 lux). Aqueous preparations of cyhexation at ≤ 147.0 μg/ml completely inhibited the germination of conidia of C. arachidicola. At a concentration of cyhexatin ≤ 73.5 and 14.7 μg/ml, less than two percent of the conidia germinated as compared with more than 95 percent germination in distilled water. Misting of aqueous preparations of cyhexatin at ≤ 147.0 μg/ml on the adaxial or both surfaces of peanut leaflets with mature leafspot lesions was very effective in reducing the sporulating potential of C. arachidicola.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Delia Agustina ◽  
◽  
Cahya Prihatna ◽  
Antonius Suwanto ◽  
◽  
...  

Author(s):  
Ye Chu ◽  
H. Thomas Stalker ◽  
Kathleen Marasigan ◽  
Chandler M. Levinson ◽  
Dongying Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document