scholarly journals Barberry as Alternate Host Is Important for Puccinia graminis f. sp. tritici But Not for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest

Plant Disease ◽  
2015 ◽  
Vol 99 (11) ◽  
pp. 1507-1516 ◽  
Author(s):  
M. N. Wang ◽  
A. M. Wan ◽  
X. M. Chen

Common barberry (Berberis vulgaris) is the alternate host of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici, under natural conditions in the U.S. Pacific Northwest. Barberry was recently shown to be infected by basidiospores of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici, under controlled conditions, but it is unclear if barberry plays any role in stripe rust epidemics under natural conditions. Aecial samples of Puccinia spp. collected from barberry plants in the Pacific Northwest from 2010 to 2013 were characterized to species by inoculation on wheat plants under controlled conditions and by molecular markers and sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. Inoculation of wheat plants with bulked aecia-bearing barberry samples resulted in most P. graminis f. sp. tritici uredia and some P. striiformis f. sp. tritici uredinia. Virulence tests demonstrated that the P. graminis f. sp. tritici isolates were sexually produced, whereas the P. striiformis f. sp. tritici isolates were clonal based on both virulence and simple sequence repeat marker tests, indicating urediniospores from wheat fields landing on barberry leaves as the possible source of P. striiformis f. sp. tritici inoculum. A method for simultaneously testing individual aecia for identifying of P. graminis f. sp. tritici and P. striiformis f. sp. tritici by pathogenicity and ITS markers. Using the method together with ITS sequencing, tested individual aecia were mostly P. graminis f. sp. tritici and occasionally some other formae speciales of P. graminis, but not P. striiformis. The results imply that barberry is essential for stem rust epidemics, but not for stripe rust under the natural conditions in the U.S. Pacific Northwest.

Plant Disease ◽  
2015 ◽  
Vol 99 (11) ◽  
pp. 1500-1506 ◽  
Author(s):  
M. N. Wang ◽  
X. M. Chen

Sexual reproduction of the stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), on barberry (Berberis vulgaris) has been shown to provide initial inoculum for the development of the disease on wheat and barley and also generate diverse races of the pathogen. However, in our previous study, the stripe rust pathogen, P. striiformis f. sp. tritici (Pst), was not found on barberry in the U. S. Pacific Northwest. To determine why Pgt is able to infect the alternate host, while Pst cannot under the natural conditions, the viabilities of teliospores of both Pgt and Pst were investigated from 2011 to 2014 by determining the germination rates using telial samples collected periodically from wheat fields. Teliospores of Pst usually produced in July were physically degraded during winter, and their germination rate decreased from 50 to 90% in August to less than 1% in the following March and no germination after May. In contrast, Pgt teliospores usually produced in July and August remained physically intact and physiologically dormant, and could not germinate until February. Germination of Pgt teliospores gradually increased to 90% in May, at which time young leaves of barberry were susceptible to infection. In addition, a time-series experiment was conducted for inoculation of barberry plants with Pst teliospores. The results showed that Pst teliospores need a minimum of 32 h continual dew-forming conditions to infect barberry, and infection reaches a peak after incubation of inoculated plants for 88 h. The lack of a prolonged period of leaf wetness conditions during the season of telial maturity effectively negates Pst infection of barberry plants in the Pacific Northwest.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 957
Author(s):  
Parimal Sinha ◽  
Xianming Chen

Barberry (Berberis spp.) is an alternate host for both the stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), and the stem rust pathogen, P. graminis f. sp. tritici (Pgt), infecting wheat. Infection risk was assessed to determine whether barberry could be infected by either of the pathogens in Asia and Southeastern Europe, known for recurring epidemics on wheat and the presence of barberry habitats. For assessing infection risk, mechanistic infection models were used to calculate infection indices for both pathogens on barberry following a modeling framework. In East Asia, Bhutan, China, and Nepal were found to have low risks of barberry infection by Pst but high risks by Pgt. In Central Asia, Azerbaijan, Iran, Kazakhstan, southern Russia, and Uzbekistan were identified to have low to high risks of barberry infection for both Pst and Pgt. In Northwest Asia, risk levels of both pathogens in Turkey and the Republic of Georgia were determined to be high to very high. In Southwest Asia, no or low risk was found. In Southeastern Europe, similar high or very high risks for both pathogens were noted for all countries. The potential risks of barberry infection by Pst and/or Pgt should provide guidelines for monitoring barberry infections and could be valuable for developing rust management programs in these regions. The framework used in this study may be useful to predict rust infection risk in other regions.


2013 ◽  
Vol 103 (9) ◽  
pp. 927-934 ◽  
Author(s):  
Jie Zhao ◽  
Long Wang ◽  
Zhiyan Wang ◽  
Xianming Chen ◽  
Hongchang Zhang ◽  
...  

The wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) population in China has been reported to be a distinct genetic group with higher diversity than those in many other countries. Genetic recombination in the P. striiformis f. sp. tritici population has been identified with molecular markers but whether sexual reproduction occurs in China is unknown. In this study, we surveyed barberry plants for infection by rust fungi in the stripe rust “hotspot” regions in Gansu, Sichuan, and Shaanxi provinces; collected barberry plants and inoculated plants of 20 Berberis spp. with germinated teliospores under controlled greenhouse conditions for susceptibility to P. striiformis f. sp. tritici; and tested P. striiformis f. sp. tritici isolates obtained from aecia on naturally infected barberry plants on the wheat genotypes used to differentiate Chinese P. striiformis f. sp. tritici races to determine virulence variations. Different Berberis spp. were widely distributed and most surveyed plants had pycnia and aecia of rust fungi throughout the surveyed regions. In total, 28 Berberis spp. were identified during our study. From 20 Berberis spp. tested with teliospores of P. striiformis f. sp. tritici from wheat plants, 18 species were susceptible under greenhouse conditions. Among 3,703 aecia sampled from barberry plants of three species (Berberis shensiana, B. brachypoda, and B. soulieana) under natural infections in Gansu and Shaanxi provinces, four produced P. striiformis f. sp. tritici uredinia on susceptible wheat ‘Mingxian 169’. Sequence of the internal transcribed spacer (ITS) regions of the four isolates from barberry shared 99% identity with the P. striiformis f. sp. tritici sequences in the National Center for Biotechnology Information database. The four isolates had virulence patterns different from all previously reported races collected from wheat plants. Furthermore, 82 single-uredinium isolates obtained from the four barberry isolates had high virulence diversity rates of 9.0 to 28.1%, indicating that the diverse isolates were produced through sexual reproduction on barberry plants under natural conditions. In addition to P. striiformis f. sp. tritici, sequence analysis of polymerase chain reaction products of the ITS regions and inoculation tests on wheat identified P. graminis (the stem rust pathogen). Our results indicated that P. striiformis f. sp. tritici can infect some Berberis spp. under natural conditions, and the sexual cycle of the fungus may contribute to the diversity of P. striiformis f. sp. tritici in China.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Jinbiao Ma ◽  
Xianming Chen ◽  
Meinan Wang ◽  
Zhensheng Kang

The wheat stripe rust fungus,Puccinia striiformisf. sp.tritici(Pst), does not have a known alternate host for sexual reproduction, which makes it impossible to study gene linkages through classic genetic and molecular mapping approaches. In this study, we compared 4,219Pstexpression sequence tags (ESTs) to the genomic sequence ofP. graminisf. sp.tritici(Pgt), the wheat stem rust fungus, using BLAST searches. The percentages of homologous genes varied greatly among differentPstlibraries with 54.51%, 51.21%, and 13.61% for the urediniospore, germinated urediniospore, and haustorial libraries, respectively, with an average of 33.92%. The 1,432Pstgenes with significant homology withPgtsequences were grouped into physical groups corresponding to 237Pgtsupercontigs. The physical relationship was demonstrated by 12 pairs (57%), out of 21 selectedPstgene pairs, through PCR screening of aPstBAC library. The results indicate that thePgtgenome sequence is useful in constructingPstphysical maps.


2010 ◽  
Vol 100 (5) ◽  
pp. 432-435 ◽  
Author(s):  
Yue Jin ◽  
Les J. Szabo ◽  
Martin Carson

The life history of Puccinia striiformis remains a mystery because the alternate host has never been identified. Inoculation of grasses using aeciospores from naturally infected Berberis chinensis and B. koreana resulted in infection on Poa pratensis, producing uredinia typical of stripe rust caused by P. striiformis. Analyses using real-time polymerase chain reaction and DNA sequence confirmed the rust fungus as P. striiformis. Pycnia and aecia were produced on B. chinensis, B. holstii, B. koreana, and B. vulgaris after inoculation using germinating telia of P. striiformis f. sp. tritici. Wheat inoculated with aeciospores from B. chinensis resulted in uredinia, which demonstrated that Berberis spp. also serve as alternate hosts for the wheat stripe rust pathogen. The elucidation of the complete life history for P. striiformis f. sp. tritici will provide a powerful tool to rapidly advance our knowledge of the genetics of this rust fungus, and will lead to the development of improved strategies for a better control of stripe rust.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 839-839 ◽  
Author(s):  
M. N. Wang ◽  
X. M. Chen

As the primary host of the stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), wheat can be infected by both aeciospores and urediniospores, and later is the host that gives rise to urediniospores and teliospores. Barberry species (e.g., Berberis vulgaris) can be infected by basidiospores, produced from the teliospores of wheat plants, and later gives rise to pycniospores and aeciospores, which has been demonstrated through artificial inoculation (3). Oregon grape (Mahonia aquifolium), closely related to Berberis, is a native evergreen shrub that is also grown as an ornamental plant in the Pacific Northwest. To determine if M. aquifolium can also serve as an alternate host for Pst, we conducted artificial inoculations under controlled conditions. Seeds of M. aquifolium collected from Pullman, WA, were sown in pots filled with soil mixture, and plants were grown in a greenhouse under wheat-growing conditions (1). In the first experiment, conducted in May to June 2011, the inoculum was telia collected from artificially inoculated wheat cv. Avocet S with urediniospores of isolate 09-134 (race PST-127) from the greenhouse. In the second experiment, conducted in July to August 2011, the inoculum was telia collected from naturally infected wheat cv. Nugaines with urediniospores from isolate 11-292 (race PST-127) from an experimental field near Pullman. For each experiment, mature teliospores of 60 telia from a single wheat plant were suspended in 1.0 ml of distilled water and inoculated with a fine paint brush onto the leaves of seven or eight 10- to 15-day-old plants of M. aquifolium. Plants were incubated initially in a dew chamber at 10°C for 72 h in darkness, then transferred to a growth chamber with a diurnal temperature cycle of 10 to 24°C and a 16 h light/8 h dark cycle (1). Reddish pycnia with nectar appeared on adaxial surfaces of inoculated leaves at 12 days post-inoculation (DPI), and reddish aecia were produced on the baxial surface at 16 DPI. All 15 M. aquifolium leaves of the 15 plants inoculated with teliospores produced pycnia and aecia. Seedlings of Nugaines and Avocet S, wheat cultivars that are susceptible to all Pst races (1), were then inoculated with a water suspension of aeciospores of 30 aecia collected from the M. aquifolium plants. Wheat plants were incubated as described above for M. aquifolium. Uredinia appeared at 15 DPI, and telia were produced after an additional 15 days. From these uredinia that formed on inoculated wheat, a total of 30 single-uredinium isolates were obtained using the standard procedure (1). Virulence tests were carried out on 20 wheat differentials for 10 randomly selected urediniospore isolates, revealing six virulence patterns. When tested with four selected Pst SSR markers (PstP001, PstP003, PstP005, PstP029) (2) and compared to other race PST-127 isolates, all 10 progeny isolates were homozygous, as were the parental isolates (09-134, 11-292). The virulence tests and marker genotypes verified that the urediniospore isolates resulted from infection by aecia, produced by parental isolate 09-134 through its sexual cycle on M. aquifolium. The study exhibited the completed sexual lifecycle of Pst through the five spore stages on wheat and M. aquifolium in a controlled setting, and suggests that under appropriate weather conditions, M. aquifolium may serve as an alternate host for Pst. Due to the wide distribution of M. aquifolium, further studies are needed to determine if the species can be infected by Pst under natural conditions. References: (1) X. M. Chen et al. Can. J. Plant Pathol. 32:315, 2010. (2) P. Cheng et al. Mol. Ecol. Resour. 12:779, 2012. (3) Y. Jin et al. Phytopathology 100:432, 2010.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 461-467 ◽  
Author(s):  
Sajid Mehmood ◽  
Marina Sajid ◽  
Jie Zhao ◽  
Tika Khan ◽  
Gangming Zhan ◽  
...  

Puccinia striiformis f. sp. tritici (Pst), the stripe rust pathogen infecting cereal crops and grasses, was believed to have a hemicyclic life cycle consisting of uredinial and telial stages before the recent discovery of barberry (Berberis spp.) as an alternate (aecial) host for the fungus. This discovery has improved the understanding of the biology of the stripe rust pathogen. The Himalayan and near-Himalayan regions of Pakistan, China, and Nepal are considered as the center of diversity for Pst pathogen. High genetic diversity has been reported in these areas, probably resulting from the sexual reproduction of the stripe rust fungus. To determine if Berberis species growing in Pakistan are susceptible to Pst, we collected seeds of five species and two subspecies from the Himalayan region in 2016 and inoculated the seedlings with germinated teliospores of a Pakistani Pst isolate under controlled conditions. Pycnia and aecia were produced on all inoculated plants of these species and subspecies, and were demonstrated as Pst by successful infection of wheat plants with aeciospores. This study showed that the tested Pakistani Berberis species and subspecies are susceptible to Pst under controlled conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen Chen ◽  
ZeDong Zhang ◽  
Xinyao Ma ◽  
Gensheng Zhang ◽  
Qiang Yao ◽  
...  

Puccinia striiformis f. sp. tritici Eriks., the cause of wheat yellow or stripe rust on wheat, undergoes sexual reproduction on barberry, but it is unclear if barberry plays any role in stripe rust epidemics under natural conditions. P. striiformis f. sp. tritici was isolated from its alternate host barberry (Berberis spp.) and primary host wheat in the vicinity of barberry by inoculation of aeciospores and urediniospores on Mingxian 169 cultivar in Qinghai province of China in 2018. The P. striiformis f. sp. tritici isolates from barberry and wheat were characterized to virulence patterns by inoculation on 24 differentials bearing Yr gene under control conditions and analyzed using 12 polymorphic simple sequence repeat (SSR) markers. The occurrence frequency of P. striiformis f. sp. tritici on barberry was 1.87% by inoculation aecia, collected from barberry on Mingxian 169 of wheat. A close virulence relationship was presented between P. striiformis f. sp. tritici isolates from both barberry and wheat based on virulence simple matching coefficient and principal coordinates analysis (PCoA). Additionally, the same genetic ancestry, based on structure analysis by STRUCTURE program and genetic relationship analyses using discriminant analysis of principal components and PCoA, was shared between P. striiformis f. sp. tritici isolates from barberry and those from wheat. Together, all the results indicated that the role of barberry in providing aeciospores as an inoculum source causing wheat stripe rust epidemic in Qinghai in spring is of considerable importance.


2013 ◽  
Vol 35 (3) ◽  
pp. 304-314 ◽  
Author(s):  
K. Kumar ◽  
M. D. Holtz ◽  
K. Xi ◽  
T. K. Turkington

Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 159-163 ◽  
Author(s):  
P. D. Peterson ◽  
K. J. Leonard ◽  
J. D. Miller ◽  
R. J. Laudon ◽  
T. B. Sutton

A federal and state program operated from 1918 until the 1980s to eradicate common barberry (Berberis vulgaris), the alternate host of Puccinia graminis, from the major areas of cereal production in the United States. Over 500 million bushes were destroyed nationally during the program, approximately 1 million in Minnesota. Some sites in Minnesota where barberry bushes were destroyed remained in the “active” class when eradication was phased out in the 1980s. Active sites were defined as those on which there was still a possibility of emergence of barberry seedlings or sprouts arising from the parent bush. In the present study, from 1998 to 2002, 72 of the approximately 1,200 active sites in Minnesota were surveyed. Areas within 90 m of mapped locations of previously destroyed bushes were searched carefully at each site. Reemerged barberry plants were found on 32 sites. The reproductive status and GPS coordinates were recorded for each reemerged bush. More than 90% of the barberry bushes were found in counties with less than 400 ha of wheat per county, mostly in southeastern Minnesota, but one bush was found in a major wheat-producing county in northwestern Minnesota. Reemergence of barberry may serve as a source of new wheat stem rust races in future epidemics.


Sign in / Sign up

Export Citation Format

Share Document