scholarly journals Association Analysis Identifies New Loci for Resistance to Chinese Yr26-Virulent Races of the Stripe Rust Pathogen in a Diverse Panel of Wheat Germplasm

Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1751-1762 ◽  
Author(s):  
Jianhui Wu ◽  
Xiaoting Wang ◽  
Nan Chen ◽  
Rui Yu ◽  
Shizhou Yu ◽  
...  

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most destructive fungal diseases of wheat worldwide. The expanding Yr26-virulent Pst race (V26) group overcomes almost all currently deployed resistance genes in China and has continued to accumulate new virulence. Investigating the genetic architecture of stripe rust resistance in common wheat is an important basis for a successful utilization of resistance in breeding programs. A panel of 410 exotic wheat germplasms was used for characterizing new stripe rust resistance loci. This panel was genotyped using high-density wheat 660K single-nucleotide polymorphism (SNP) array, and phenotypic evaluation of seedlings for stripe rust resistance was performed using multiple Pst races. Thirty-five loci conferring resistance were identified through genome-wide association mapping, and explained phenotypic variances ranged from 53 to 75%. Of these, 14 were colocated in the proximity of the known loci, including cataloged Yr genes Yr9, Yr10, Yr26, Yr33, Yr47, Yr56, Yr57, Yr64, Yr67, Yr72, and Yr81 and three temporarily designated as YrCen, YrNP63, and YrRC detected in our quantitative trait locus (QTL) mapping studies. Seven of them (Yr9, Yr10, Yr24/26, Yr81, YrCEN, YrNP63, and YrRC) were confirmed by molecular detection or genetic analysis. New loci that were identified to be different from reported Yr genes need further confirmation. Nine QTL with significantly large phenotypic effect on resistance to all tested races were considered as major loci for effective resistance. The identified loci enrich our stripe rust resistance gene pool, and the linked SNPs should be useful for marker-assisted selection in breeding programs.

Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1482-1487 ◽  
Author(s):  
Qiang Li ◽  
Jing Huang ◽  
Lu Hou ◽  
Pei Liu ◽  
Jinxue Jing ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars, but only a few effective genes are available. The wheat accession H9020-1-6-8-3 is a translocation line previously developed from interspecific hybridization between wheat genotype 7182 and Psathyrostachys huashanica, and is resistant to most Chinese Puccinia striiformis f. sp. tritici races. To identify the resistance genes in the translocation line, H9020-1-6-8-3 was crossed with susceptible genotype Mingxian 169, and seedlings of parents and F1, F2, and F3 progenies were tested with prevalent Chinese P. striiformis f. sp. tritici races CYR32 and CYR33 under controlled greenhouse conditions. The genetic results indicated that two single dominant genes in H9020-1-6-8-3 confer resistance to CYR32 and CYR33, respectively. The gene for resistance to CYR33 was temporarily designated as YrH9020. Six simple-sequence repeat markers were used to map the resistance gene to the short arm of wheat chromosome 2D, using 329 F2 plants tested with CYR33 in the greenhouse. The genetic distances of the two closest flanking markers, Xgwm261 and Xgwm455, were 4.4 and 5.8 centimorgans, respectively. Disease assessments and polymorphic tests of the flanking markers among the Psathyrostachys huashanica line and wheat lines 7182, H9020-1-6-8-3, and Mingxian169 suggested that the resistance gene YrH9020 in H9020-1-6-8-3 was originally from P. huashanica. The exotic stripe rust resistance gene and linked molecular markers should be useful for pyramiding with other genes to develop wheat cultivars with high-level and durable resistance to stripe rust.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1166-1171 ◽  
Author(s):  
Mesfin Gessese ◽  
Harbans Bariana ◽  
Debbie Wong ◽  
Matthew Hayden ◽  
Urmil Bansal

The deployment of diverse sources of resistance in new cultivars underpins durable control of rust diseases. Aus27430 exhibited a moderate level of stripe rust resistance against Puccinia striiformis f. sp. tritici (Pst) pathotypes currently prevalent in Australia. Aus27430 was crossed with the susceptible parent Avocet S (AvS) and subsequent filial generations were raised. Monogenic segregation observed among Aus27430/AvS F3 families was confirmed through stripe rust screening of an F6 recombinant inbred line (RIL) population, and the resistance locus was temporarily named YrAW5. Selective genotyping using an Illumina iSelect 90K wheat SNP bead chip array located YrAW5 in chromosome 6A. Genetic mapping of the RIL population with linked 90K SNPs that were converted into PCR-based marker assays, as well as SSR markers previously mapped to chromosome 6A, confirmed the chromosomal assignment for YrAW5. Comparative analysis of other stripe rust resistance genes located in chromosome 6A led to the formal designation of YrAW5 as Yr81. Tests with a marker linked with Yr18 also demonstrated the presence of this gene in Aus27430. Yr18 interacted with Yr81 to produce stripe rust responses lower than those produced by RILs carrying these genes individually. Although gwm459 showed higher recombination with Yr81 compared with the other flanking marker KASP_3077, it amplified the AvS allele in 80 cultivars, whereas KASP_3077 amplified AvS allele in 67 cultivars. Both markers can be used in marker-assisted selection after confirming parental polymorphism.


Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 413-420 ◽  
Author(s):  
N. Qureshi ◽  
H. S. Bariana ◽  
P. Zhang ◽  
R. McIntosh ◽  
U. K. Bansal ◽  
...  

The Australian continent was free from wheat stripe rust caused by Puccinia striiformis f. sp. tritici until exotic incursions occurred in 1979 and 2002. The 2002 incursion enabled the identification of a new stripe rust resistance gene (Yr34) in the advanced breeding line WAWHT2046. In this study, we developed and validated markers closely linked with Yr34, which is located in the distal region in the long arm of chromosome 5A. Four kompetitive allele-specific polymerase chain reaction (KASP) and three sequence-tagged site (STS) markers derived from the International Wheat Genome Sequencing Consortium RefSeq v1.0 scaffold-77836 cosegregated with Yr34. Markers sun711, sun712, sun725, sunKASP_109, and sunKASP_112 were shown to be suitable for marker-assisted selection in a validation panel of 71 Australian spring wheat genotypes, with the exception of cultivar Orion that carried the Yr34-linked alleles for sunKASP_109 and sunKASP_112. Markers previously reported to be linked with adult plant stripe rust resistance gene Yr48 also cosegregated with Yr34. Wheat genotypes carrying Yr34 and Yr48 produced identical haplotypes for the Yr34-linked markers identified in this study and those previously reported to be linked with Yr48. Phenotypic testing of genotypes carrying Yr34 and Yr48 showed that both genes conferred similar seedling responses to pre-2002 and post-2002 P. striiformis f. sp. tritici pathotypes. Further testing of 600 F2 plants from a cross between WAWHT2046 and RIL143 (Yr48) with P. striiformis f. sp. tritici pathotype 134 E16A+Yr17+Yr27+ failed to reveal any susceptible segregants. Our results strongly suggest that Yr34 and Yr48 are the same gene, and that Yr48 should be considered a synonym of Yr34.


2019 ◽  
Vol 70 (11) ◽  
pp. 939
Author(s):  
Zhengwu Fang ◽  
Cai Sun ◽  
Tao Lu ◽  
Zhi Xu ◽  
Wendi Huang ◽  
...  

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici Erikss (Pst), is one of the most damaging diseases in common wheat (Triticum aestivum L.) globally. Breeding for genetic resistance is the most effective, economical and ecologically sustainable method to control the disease. The wheat line H922-9-12, developed from a cross between Psathyrostachys huashanica Keng and T. aestivum, was highly resistant to nine Pst races in tests at the seedling stage. To characterise and map the stripe rust resistance gene(s) in H922-9-12, segregating populations were developed by crossing H922-9-12 with the susceptible cultivar Mingxian 169. When tested with Pst race CYR34, the stripe rust resistance in H922-9-12 was shown to be controlled by a single dominant gene, provisionally designated YrH922. A linkage map was constructed with five simple sequence repeat, six expressed sequence tag (EST) and two sequence-related amplified polymorphism markers. YrH922 was located on chromosome 3BL and was 2.7 and 3.4 cM proximal to EST-STS (sequence-tagged site) markers BE517923 and BE471045, respectively. The flanking marker BE517923 in marker-assisted selection for the gene can be used to improve stripe rust resistance on breeding programs.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1763-1770
Author(s):  
Liang Huang ◽  
Xing Zhi Xiao ◽  
Bo Liu ◽  
Li Gao ◽  
Guo Shu Gong ◽  
...  

Wheat stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious fungal disease worldwide, especially in the Huang-Huai-Hai region, a main wheat production area in China. Gene postulation, molecular testing, and pedigree analysis were conducted to determine the presence of stripe rust resistance genes to 15 Pst races in 66 selected commercial wheat cultivars released from 2000 to 2016. In addition, races CYR32, CYR33, and CYR34 were used to evaluate resistance to Pst at the adult-plant stage of wheat in the field. Four Yr genes (Yr9, Yr10, Yr26, and Yr32) were postulated in 24 wheat cultivars either singly or in combination. Thirty-six cultivars might contain unknown Yr genes, whereas no identified Yr gene was postulated in six cultivars. Yr9 was detected at a frequency of 28.8%, and no cultivars carried Yr5, Yr15, or Yr18. Ten cultivars (15.2%) exhibited adult-plant resistance in the field tests with three predominant races. Three cultivars (Langyan 43, Xinong 889, and Yunfeng 139) had all-stage resistance. These results are useful to growers selecting cultivars and to breeders aiming to use more resistance genes to develop new cultivars with effective resistance in order to reduce stripe rust damage.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 154 ◽  
Author(s):  
Gerrie Maree ◽  
Renée Prins ◽  
Lesley Boyd ◽  
Howard Castelyn ◽  
Cornelia Bender ◽  
...  

The release of commercial wheat cultivars resistant to stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), remains one of the primary objectives in many breeding programs. Previous studies of adult plant resistance derived from the winter wheat cultivar Cappelle-Desprez identified the quantitative trait loci (QTL) QYr.ufs-2A, QYr.ufs-2D, QYr.ufs-5B and QYr.ufs-6D to affect stripe rust under South African conditions. Phenotypic field assessment, fluorescence microscopy and molecular analysis were used to characterise recombinant inbred lines differing in number and combinations of these QTL. Besides the confirmation of enhanced resistance through co-occurring resistance loci, varying levels of defence, conditioned by different QTL combinations were observed. Carriers of QYr.ufs-2A or QYr.ufs-2D, accompanied by at least one other QTL, exhibited higher resistance levels than lines with a single QTL. The knowledge gained in this study will help wheat breeders to develop cultivars with more diverse combinations and potentially more durable sources of stripe rust resistance.


Euphytica ◽  
2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Maryam Tariq ◽  
Javed Iqbal Mirza ◽  
Shaukat Hussain ◽  
Naeela Qureshi ◽  
Kerrie Forrest ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document