scholarly journals The Association of Tobacco mosaic virus with Green Spot of Cured Wrapper Tobacco Leaves

Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 37-41 ◽  
Author(s):  
J. A. LaMondia

Near-isogenic lines of cigar wrapper tobacco resistant or susceptible to Tobacco mosaic virus (TMV) were used to evaluate the association of TMV infection with green spot symptoms in cured leaves. TMV infection, as determined by double-antibody sandwich enzyme-linked immunosorbent assay (ELISA), was detected on susceptible but not resistant plants in field experiments. Green spot severity on cured leaves was greater for susceptible than resistant plants, even when symptoms of TMV were not evident in the field. Some green spots were present on resistant leaves despite the fact that the virus was not detected by ELISA. Resistant and susceptible plants had similar responses to virus infection and similar ELISA detection of TMV when plants were held at continuous temperatures over 28°C in growth chambers. Plant resistance was not compromised in the field in cloth-covered shade tents even when 33.5 of the 96 h immediately following inoculation were above 28°C. Green spot of cured leaves was strongly associated with TMV infection in susceptible plants, even when plants were infected after leaf expansion and mosaic symptoms were not present. Green spot also occurred to a lesser extent and for a limited time in inoculated resistant plants. The development of green spot symptoms on cured leaves may be the result of either systemic infection of TMV-susceptible plants or associated with the systemic resistance response to TMV inoculation of resistant plants.

2014 ◽  
Vol 27 (6) ◽  
pp. 567-577 ◽  
Author(s):  
Feng Zhu ◽  
De-Hui Xi ◽  
Shu Yuan ◽  
Fei Xu ◽  
Da-Wei Zhang ◽  
...  

Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing–based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography–mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.


2000 ◽  
Vol 90 (11) ◽  
pp. 1233-1238 ◽  
Author(s):  
F. M. de Assis Filho ◽  
J. L. Sherwood

The mechanism of virus transmission through seed was studied in Arabidopsis thaliana infected with Turnip yellow mosaic virus (TYMV) and Tobacco mosaic virus (TMV). Serological and biological tests were conducted to identify the route by which the viruses reach the seed and subsequently are located in the seed. Both TYMV and TMV were detected in seed from infected plants, however only TYMV was seed-transmitted. This is the first report of transmission of TYMV in seed of A. thaliana. Estimating virus seed transmission by grow-out tests was more accurate than enzyme-linked immunosorbent assay due to the higher frequency of antigen in the seed coat than in the embryo. Virus in the seed coat did not lead to seedling infection. Thus, embryo invasion is necessary for seed transmission of TYMV in A. thaliana. Crosses between healthy and virus-infected plants indicated that TYMV from either the female or the male parent could invade the seed. Conversely, invasion from maternal tissue was the only route for TMV to invade the seed. Pollination of flowers on healthy A. thaliana with pollen from TYMV-infected plants did not result in systemic infection of healthy plants, despite TYMV being carried by pollen to the seed.


Author(s):  
Rami Obeid ◽  
Elias Wehbe ◽  
Mohamad Rima ◽  
Mohammad Kabara ◽  
Romeo Al Bersaoui ◽  
...  

Background: Tobacco mosaic virus (TMV) is the most known virus in the plant mosaic virus family and is able to infect a wide range of crops, in particularly tobacco, causing a production loss. Objectives: Herein, and for the first time in Lebanon, we investigated the presence of TMV infection in crops by analyzing 88 samples of tobacco, tomato, cucumber and pepper collected from different regions in North Lebanon. Methods: Double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), revealed a potential TMV infection of four tobacco samples out of 88 crops samples collected. However, no tomato, cucumber and pepper samples were infected. The TMV+ tobacco samples were then extensively analyzed by RT-PCR to detect viral RNA using different primers covering all the viral genome. Results and Discussion: PCR results confirmed those of DAS-ELISA showing TMV infection of four tobacco samples collected from three crop fields of North Lebanon. In only one of four TMV+ samples, we were able to amplify almost all the regions of viral genome, suggesting possible mutations in the virus genome or an infection with a new, not yet identified, TMV strain. Conclusion: Our study is the first in Lebanon revealing TMV infection in crop fields, and highlighting the danger that may affect the future of agriculture.


1977 ◽  
Vol 83 (2) ◽  
pp. 41-59 ◽  
Author(s):  
Jeanne Dijkstra ◽  
G. C. A. Bruin ◽  
Ankie C. Burgers ◽  
L. C. Loon ◽  
Christien Ritter ◽  
...  

2014 ◽  
Vol 111 ◽  
pp. 14-18 ◽  
Author(s):  
Yongguang Han ◽  
Yue Luo ◽  
Shirong Qin ◽  
Lei Xi ◽  
Bo Wan ◽  
...  

2020 ◽  
Vol 110 (6) ◽  
pp. 1189-1198
Author(s):  
Defu Wang ◽  
Baoxia Wang ◽  
Jiangran Wang ◽  
Shuting Wang ◽  
Weiyu Wang ◽  
...  

The harpin protein Hpa1 has various beneficial effects in plants, such as promoting plant growth and inducing pathogen resistance. Our previous study found that Hpa1 could significantly alleviate the mosaic symptoms of tobacco mosaic virus (TMV) in Pinellia ternata, indicating that Hpa1 can effectively stimulate resistance. Here, the potential mechanism of disease resistance and field applicability of Hpa1 against TMV in P. ternata were further investigated. The results showed that 15 µg ml−1 Hpa1 had stronger antiviral activity than the control, and its protective effect was better than its curative effect. Furthermore, Hpa1 could significantly induce an increase in defense-related enzyme activity, including polyphenol oxidase, peroxidase, catalase, and superoxide dismutase, as well as increase the expression of disease resistance-related genes (PR1, PR3, PR5, and PDF1.2). Concurrently, Hpa1 significantly increased the content of some disease resistance-related substances, including hydrogen peroxide, phenolics, and callose, whereas the content of malondialdehyde was reduced. In addition, field application analysis demonstrated that Hpa1 could effectively elicit a defense response against TMV in P. ternata. Our findings propose a mechanism by which Hpa1 can prevent TMV infection in Pinellia by inducing systemic resistance, thereby providing an environmentally friendly approach for the use of Hpa1 in large-scale applications to improve TMV resistance in Pinellia.


2006 ◽  
Vol 87 (4) ◽  
pp. 1005-1012 ◽  
Author(s):  
A. A. Bazzini ◽  
S. Asurmendi ◽  
H. E. Hopp ◽  
R. N. Beachy

Replication of Potato virus X (PVX) was reduced in transgenic protoplasts that accumulated wild-type coat protein (CPWT) of Tobacco mosaic virus (TMV) or a mutant CP, CPT42W, that produced highly ordered states of aggregation, including pseudovirions. This reaction is referred to as heterologous CP-mediated resistance. However, protoplasts expressing a CP mutant that abolished aggregation and did not produce pseudovirions, CPT28W, did not reduce PVX replication. Similarly, in transgenic tobacco plants producing TMV CPWT or CPT42W, there was a delay in local cell-to-cell spread of PVX infection that was not observed in CPT28W plants or in non-transgenic plants. The results suggest that the quaternary structure of the TMV CP regulates the mechanism(s) of heterologous CP-mediated resistance. Similarly, transgenic protoplasts that produced PVX CP conferred transient protection against infection by TMV RNA. Transgenic plants that accumulated PVX CP reduced the cell-to-cell spread of infection and resulted in a delay in systemic infection following inoculation with TMV or TMV RNA. Heterologous CP-mediated resistance was characterized by a brief delay in systemic infection, whilst homologous CP-mediated resistance conferred reduced or no systemic infection.


Sign in / Sign up

Export Citation Format

Share Document