scholarly journals First Report of White Mold Caused by Sclerotinia sclerotiorum on Sweet Basil in Turkey

Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1471-1471 ◽  
Author(s):  
F. M. Tok

In February of 2008, wilt and collapse of sweet basil (Ocimum basilicum L.) was observed on approximately 20% of the plants in a commercial greenhouse in Demre, Antalya, Turkey. Crown and stems of infected plants were necrotic; leaves turned brown and wilted. Profuse, white mycelia and occasionally black sclerotia were found inside and outside of affected stems. Sclerotinia sclerotiorum (Lib). de Bary, identified based on morphological characteristics was isolated from sclerotia and symptomatic stems on potato dextrose agar amended with tetracycline. To conduct pathogenicity tests, sclerotia produced on carrot discs were surface disinfested in 70% ethanol and dried on sterilized filter papers. Ten sclerotia were placed in 9-cm-diameter glass petri plates containing 15 ml of sterilized distilled water. Plates were wrapped with Parafilm and incubated at 4°C for 5 to 6 weeks in the dark. Plates were then incubated at 15°C in 12 h of dark and 12 h of light. Apothecia developed after 2 weeks. Ascospores were harvested from apothecia with distilled water by crushing and shaking the apothecia in centrifuge tubes. Thirty basil plants sprayed with ascospores (106 spores per ml) were maintained in a growth chamber at 22°C and 90% humidity. After 2 weeks, necrotic leaves and stems were observed on all inoculated plants. S. sclerotiorum was recovered from symptomatic tissues. No symptoms developed on the 30 basil plants sprayed with sterile distilled water. The pathogenicity test was repeated with similar results. S. sclerotiorum on basil has been reported in Canada (4), the United States, (2,3), and Italy (1). To our knowledge, this is the first report of S. sclerotiorum on basil in Turkey. References: (1) A. Garibaldi et al. Plant Dis. 81:124, 1997. (2) G. E. Holcomb and M. J. Reed. Plant Dis. 78:924, 1994. (3) S. T. Koike. Plant Dis. 84:1342, 2000. (4) T. C. Paulitz. Plant Dis. 81:229, 1997.

Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 683-683 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Sweet basil (Ocimum basilicum) is an economically important herb in several Mediterranean countries. Approximately 30 ha are grown annually in France for fresh and processed consumption. During the spring and fall of 2004, a damaging foliar disease was observed in some crops near Saint Tropez in the French Riviera Region. More than 50% of plants were affected in an organically produced field-grown crop at an altitude of 250 m. Leaves of infected plants were initially slightly chlorotic, especially near the central vein. Within 2 to 3 days, a characteristic gray, furry growth was evident on the lower leaf surface and sometimes on the upper leaf surface. The appearance and severity of the disease was affected by overhead sprinkler irrigation. Basal leaves were severely affected. Microscopic observations revealed sporangiophores branching two to seven times. Sporangiophores, with a length of 250 to 500 μm (average 350 μm), ended with sterigmata bearing single sporangia. Sporangia measured 15 to 25 × 20 to 35 μm (average 22 × 28 μm), were elliptical and grayish in mass. The pathogen was identified as Peronospora sp. on the basis of its morphological characteristics (4). Pathogenicity was confirmed by inoculating leaves of 40-day-old healthy plants with a sporangial suspension (1 × 105 conidia/ml). Three containers with 150 plants each of O. basilicum cv Genovese gigante were used as replicates. Noninoculated plants served as controls. Plants were maintained in a growth chamber at 20°C (12 h of light per day) and 90 to 95% relative humidity. The pathogenicity test was carried out twice. After 6 days, typical symptoms of downy mildew developed on the inoculated plants, and Peronospora sp. was observed on the leaves. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of Peronospora sp. on basil in France. Peronospora sp. was previously reported on sweet basil in Italy (1) and P. lamii on sweet basil in Uganda (3). Seed transmission (2) is suspected as the reason for recent outbreaks in Europe. References: (1) A. Garibaldi et al. Plant Dis. 88:312, 2004. (2) A. Garibaldi et al. Z. Pflanzenkr. Pflanzenschutz 111:465, 2004 (3) C. G. Hansford. Rev. Appl. Mycol. 12:421, 1933. (4) D. M. Spencer. The Downy Mildews. Academic Press, NY, 1981.


Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1473-1473 ◽  
Author(s):  
G. T. Tziros ◽  
G. A. Bardas ◽  
J. T. Tsialtas ◽  
G. S. Karaoglanidis

Oilseed rape (Brassica napus L.) was recently introduced into Greece for the production of biofuels. During May of 2007, symptoms typical of stem rot were observed on oilseed rape plants in three commercial fields in the area of Galatades-Pella, Central Macedonia, Greece. Approximately 30% of the plants were affected. Symptoms began as a chlorotic wilt on the foliage and developed into necrosis of basal stems. In the advanced stages of the disease, stems and branches became bleached and eventually died. White, as well as black, mycelium and irregularly shaped sclerotia (2 to 5 mm in diameter) were produced abundantly on and inside the affected stems. To isolate the pathogen, 20 symptomatic 6-month-old plants were collected from each field. Sclerotia were dipped in 70% ethanol, surface sterilized in 1% sodium hypochlorite for 1 min, and rinsed in sterile water. Sclerotia placed on potato dextrose agar (PDA) were incubated in the dark at 25°C for 10 days. Sclerotinia sclerotiorum (Lib.) de Bary was identified on the basis of morphological characteristics (2). To conduct pathogenicity tests, 10 6-week-old oilseed rape plants (cv. Titan) were each inoculated with a 5-mm-diameter colonized PDA disk placed in wounds made in the basal stem with a sterile scalpel. Five control plants were treated similarly except that the agar disk did not contain mycelium. Plants were then covered with a plastic bag to maintain high humidity. After 72 h, the bags were removed and the plants were maintained in a growth chamber at 23 to 25°C with a 12-h photoperiod and 75% relative humidity. Pathogenicity tests were repeated three times. Symptoms identical to those observed in the field developed within 12 days after inoculation; control plants remained healthy. The fungus was reisolated from all inoculated plants, confirming Koch's postulates. S. sclerotiorum has been reported on oilseed rape in Argentina, Australia, Brazil, Canada, the United States, and New Zealand (1). To our knowledge, this is the first report of Sclerotinia stem rot of oilseed rape in Greece. References: (1) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. Online publication. ARS, USDA, 2008. (2) L. M. Kohn. Phytopathology 69:881, 1979.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 910-910 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
A. Poli ◽  
M. L. Gullino

Pear (Pyrus communis L.) is widely grown in Italy, the leading producer in Europe. In summer 2011, a previously unknown rot was observed on fruit of an old cultivar, Spadoncina, in a garden in Torino Province (northern Italy). The decayed area of the fruit was soft, dark brown, slightly sunken, circular, and surrounded by an irregular margin. The internal decayed area appeared rotten and brown and rotted fruit eventually fell. To isolate the causal agent, fruits were soaked in 1% NaOCl for 30 s and fragments (approximately 2 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 20 and 28°C under alternating light and darkness. Colonies of the fungus initially appeared whitish, then turned dark gray. After about 30 days of growth, unicellular elliptical hyaline conidia were produced in pycnidia. Conidia measured 16 to 24 × 5 to 7 (average 20.1 × 5.7) μm (n = 50). The morphological characteristics are similar to those of the fungus Botryosphaeria dothidea (Moug.: Fr.) Ces. & De Not. (4). The internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. BLAST analysis (1) of the 473-bp segment showed a 100% similarity with the sequence of the epitype of B. dothidea AY236949. The nucleotide sequence has been assigned the GenBank Accession No. JQ418493. Pathogenicity tests were performed by inoculating six pear fruits of the same cultivar (Spadoncina) after surface disinfesting in 1% sodium hypochlorite and wounding. Mycelial disks (8 mm diameter), obtained from 10-day-old PDA cultures of one strain, were placed on wounds. Six control fruits were inoculated with plain PDA. Fruits were incubated at 25 ± 1°C in plastic boxes. The first symptoms developed 3 days after inoculation. After 5 days, the rot was very evident and B. dothidea was consistently reisolated. Noninoculated fruits remained healthy. The pathogenicity test was performed twice. B. dothidea was identified on decayed pears in the United States (2), South Africa, New Zealand, Japan, and Taiwan (3). To our knowledge, this is the first report of the presence of B. dothidea on pear in Italy, as well as in Europe. In Italy, the economic importance of the disease on pear fruit is at present limited, although the pathogen could represent a risk for this crop. References: (1) S. F. Altschul et al. Nucleic Acids Res., 25:3389, 1997. (2) L. F. Grand. Agr. Res. Serv. Techn. Bull. 240:1, 1985. (3) Y. Ko et al. Plant Prot. Bull. (Taiwan) 35:211, 1993. (4) B. Slippers et al. Mycologia 96:83, 2004.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 788-788
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Rudbeckia fulgida (orange coneflower) is an herbaceous species (Asteraceae) grown in full sun in flower beds and borders in gardens. In the summer of 2009, a previously unknown leaf spot was observed on R. fulgida plants in three private gardens located near Biella (northern Italy). Leaves of infected plants showed extensive and irregular, dark brown, necrotic lesions that were slightly sunken with a well-defined border. Lesions initially ranged from 0.5 to 3 mm in diameter and eventually coalesced to cover the entire leaf, which curled without falling. At a later stage, stems were also affected, causing death of the plant. The disease affected 90% of plants. Dark brown pycnidia, 68 to 195 × 60 to 165 (average 135 × 117) μm in diameter, containing hyaline (light gray in mass), and ellipsoid, nonseptate conidia measuring 4.0 to 7.0 × 2.4 to 3.5 (average 5.4 × 3.0) μm were observed on symptomatic tissue. On the basis of these morphological characteristics, the fungus was related to the genus Phoma. Diseased tissue was excised from the margin of lesions, immersed in a solution containing 1% sodium hypochlorite for 2 to 3 s, rinsed in sterile distilled water, and then cultured on potato dextrose agar (PDA) medium. Fungal colonies initially produced a white mycelium that became greenish gray when incubated at temperatures ranging between 22 and 25°C under alternating daylight and darkness (13 h of light and 11 h of dark). After 14 days of incubation, unicellular, cylindrical or truncated cone-shaped, light brown chlamydospores measuring 6 to 12 μm in diameter developed in long chains. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 498-bp segment showed 100% homology with a sequence of a Phoma sp. (EF585395). The nucleotide sequence of our isolate was assigned GenBank Accession No. GU573979. Pathogenicity tests were performed by placing 100 ml of a water homogenate of mycelium (1 × 105 mycelial fragments/ml) obtained from 15-day-old PDA cultures of the fungus on leaves of three healthy 4-month-old potted R. fulgida plants. Three plants inoculated with a homogenate of PDA served as controls. Plants were maintained in a greenhouse, in a high humidity chamber for 7 days after inoculation, at temperatures ranging from 18 to 22°C and under high relative humidity conditions (70 to 90%). The first foliar lesions developed on leaves 7 days after inoculation, and after 10 to 12 days, 80% of leaves were severely infected. Control plants remained healthy. The organism reisolated on PDA from leaf lesions was identical in morphology to the isolate used for inoculation. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of a Phoma sp. on R. fulgida in Italy. Mycosphaerella ligulicola was reported on Rudbeckia sp. (2), while M. rudbeckiae and Phoma exigua have been reported on R. hirta (3). Currently, the economic importance of this disease is limited, but may become a more significant problem if the cultivation of this species increases. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) C. G. C. Chesters and J. P. Blakeman. Ann. Appl. Biol. 60:385, 1967. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 460-460 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
J. Cardinale ◽  
M. L. Gullino

Avocado (Persea americana Mill.) is grown in some areas of southern Italy. In spring 2011, a previously unknown rot was observed on fruit that was marketed in Torino (northern Italy). The decayed area started from the stalk, appeared irregular and soft, and was surrounded by a dark brown margin. The internal decayed area appeared rotten, brown, and surrounded by bleached tissue. Fragments (approximately 3 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 21 and 25°C under alternating conditions of light and dark. Colonies of the fungus initially appeared whitish, later turning mouse gray to black. Mature mycelium was septate and produced a dark pigment. The fungus, grown on oat agar (2) and incubated at temperatures between 21 and 25°C under alternating light and darkness, produced grayish colonies with a fluffy aerial mycelium that became dark with age and produced black pigments. After 18 days of incubation, such colonies produced pycnidia aggregated into stromatic masses, emerging from decayed tissues, and up to 3 to 4 mm in diameter. Conidia produced in the pycnidia were initially unicellular, hyaline, granulose, ovoid to ellipsoidal, and measured 20.8 to 26.9 × 12.5 to 16.1 (average 24.4 × 13.5) μm. After 7 days, mature conidia became darker, uniseptate, and longitudinally striate. Paraphyses produced within the tissues of pycnidia were hyaline, cylindrical, nonseptate, and up to 63 μm long. Morphological characteristics of mycelia, pycnidia, and conidia observed with a light microscope permitted identify of the fungus as Lasiodiplodia theobromae (3). The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS1/ITS4 and sequenced. BLAST analysis (1) of the 488-bp segment showed a 100% similarity with the corresponding sequence (GenBank Accession No. GQ502453) of L. theobromae Pat. Griffon & Maubl. The nucleotide sequence of the strain used for pathogenicity tests was submitted to GenBank (Accession No. JN849098). Pathogenicity tests were performed by inoculating 10 avocado fruits after surface disinfesting in 1% sodium hypochlorite and then wounding. Mycelial disks (8 mm in diameter) obtained from PDA cultures of one strain were placed on wounds. Ten control fruits were inoculated with plain PDA. Fruits were incubated at 15 ± 1°C. The first symptoms developed 4 days after the artificial inoculation. After 7 days, the rot was evident and L. theobromae was consistently reisolated. Noninoculated fruit remained healthy. The pathogenicity test was performed twice. To our knowledge, this is the first report of the presence of L. theobromae causing postharvest fruit rot on avocado in Italy, as well as in Europe. The occurrence of postharvest fruit rot on avocado caused by L. theobromae was described in many avocado-producing areas such as the United States (4), South Africa, and Israel. In Italy, the economic importance of avocado cultivation is currently limited. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2). P. Narayanasamy. Microbial Plant Pathogens. Detection and Disease Diagnosis: Fungal Pathogens. Springer, Dordrecht, 2011. (3) E. Punithalingam. Sheet 519. CMI Description of Fungi and bacteria, 1976. (4) H. E. Stevens and R. B. Piper. Circular No. 582, USDA, 1941.


Plant Disease ◽  
2004 ◽  
Vol 88 (3) ◽  
pp. 312-312 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
G. Minuto ◽  
M. L. Gullino

Sweet basil (Ocimum basilicum) is an economically important herb in several Mediterranean countries. Approximately 80 ha are grown annually in Italy for fresh and processed consumption. In 2003, a damaging foliar disease was observed in several greenhouses located in the Liguria Region of northern Italy. More that 50% of the plants were affected. Leaves of infected plants were initially slightly chlorotic, especially near the central vein. Within 2 to 3 days, a characteristic gray, furry growth was evident on the lower surface of infected leaves. These symptoms sometimes occurred on the top sides of leaves. Although the distribution of the disease was generally uniform, symptoms appeared first in a patchy pattern in the central part of the greenhouses where air temperature and relative humidity were highest. Where air circulation was apparently poor, bottom leaves were severely affected by the disease. Microscopic observations revealed conidiophores branching two to seven times. Conidiophores with a length of 250 to 500 μm (average 350 μm) ended with sterigmata bearing single conidia. Conidia measured 15 to 25 × 20 to 35 μm (average 22 × 28 μm) and were elliptical and grayish in mass. The pathogen was identified as a Peronospora sp. based on its morphological characteristics (3). Pathogenicity was confirmed by inoculating leaves of 40-day-old healthy plants with a conidial suspension (1 × 105 conidia per ml). Three containers containing 150 plants each of O. basilicum cv. Genovese gigante were used as replicates. Noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a growth chamber at 20°C (12 h of light per day) and 90 to 95% relative humidity. The pathogenicity test was carried out twice. After 6 days, typical symptoms of downy mildew developed on the inoculated plants and a Peronospora sp. was observed on the leaves. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of a Peronospora sp. on basil in Italy. Peronospora sp. and P. lamii were previously reported on sweet basil in Uganda (1,2). References: (1) C. G. Hansford. Rev. Appl. Mycol. 12:421, 1933. (2) C. G. Hansford. Rev. Appl. Mycol. 17:345, 1938. (3) D. M. Spencer. The Downy Mildews. Academic Press, N.Y., 1978.


Plant Disease ◽  
2021 ◽  
Author(s):  
Charles Krasnow ◽  
Nancy Rechcigl ◽  
Jennifer Olson ◽  
Linus Schmitz ◽  
Steven N. Jeffers

Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old ‘Brandi Burgundy’ chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1109-1109 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lamb's lettuce or corn salad (Valerianella olitoria) is increasingly grown in Italy and used primarily in the preparation of mixed processed salad. In the fall of 2005, plants of lamb's lettuce, cv Trophy, exhibiting a basal rot were observed in some commercial greenhouses near Bergamo in northern Italy. The crown of diseased plants showed extensive necrosis, progressing to the basal leaves, with plants eventually dying. The first symptoms, consisting of water-soaked zonate lesions on basal leaves, were observed on 30-day-old plants during the month of October when temperatures ranged between 15 and 22°C. Disease was uniformly distributed in the greenhouses, progressed rapidly in circles, and 50% of the plants were affected. Diseased tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with 100 μg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently and readily isolated and maintained in pure culture after single-hyphal tipping (3). The five isolates of R. solani, obtained from affected plants successfully anastomosed with tester isolate AG 4, no. RT 31, received from R. Nicoletti of the Istituto Sperimentale per il Tabacco, Scafati, Italy (2). The hyphal diameter at the point of anastomosis was reduced, and cell death of adjacent cells occurred (1). Pairings were also made with AG 1, 2, 3, 5, 7, and 11 with no anastomoses observed between the five isolates and testers. For pathogenicity tests, the inoculum of R. solani (no. Rh. Vale 1) was grown on autoclaved wheat kernels at 25°C for 10 days. Plants of cv. Trophy were grown in 10-liter containers (20 × 50 cm, 15 plants per container) on a steam disinfested substrate (equal volume of peat and sand). Inoculations were made on 20-day-old plants by placing 2 g of infected wheat kernels at each corner of the container with 3 cm as the distance to the nearest plant. Plants inoculated with clean wheat kernels served as controls. Three replicates (containers) were used. Plants were maintained at 25°C in a growth chamber programmed for 12 h of irradiation at a relative humidity of 80%. The first symptoms, consisting of water-soaked lesions on the basal leaves, developed 5 days after inoculation with crown rot and plant kill in 2 weeks. Control plants remained healthy. R. solani was consistently reisolated from infected plants. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of R. solani on lamb's lettuce in Italy as well as worldwide. The isolates were deposited at the AGROINNOVA fungal collection. The disease continues to spread in other greenhouses in northern Italy. References: (1) D. Carling. Rhizoctonia Species: Pages 37–47 in: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, the Netherlands, 1996. (2) J. Parmeter et al. Phytopathology, 59:1270, 1969. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1996.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1580-1580
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
J. Y. Kim ◽  
H. D. Shin

Sweet basil, Ocimum basilicum L., is a fragrant herb belonging to the family Lamiaceae. Originated in India 5,000 years ago, sweet basil plays a significant role in diverse cuisines across the world, especially in Asian and Italian cooking. In October 2008, hundreds of plants showing symptoms of leaf spot with nearly 100% incidence were found in polyethylene tunnels at an organic farm in Icheon, Korea. Leaf spots were circular to subcircular, water-soaked, dark brown with grayish center, and reached 10 mm or more in diameter. Diseased leaves defoliated prematurely. The damage purportedly due to this disease has reappeared every year with confirmation of the causal agent made again in 2011. A cercosporoid fungus was consistently associated with disease symptoms. Stromata were brown, consisting of brown cells, and 10 to 40 μm in width. Conidiophores were fasciculate (n = 2 to 10), olivaceous brown, paler upwards, straight to mildly curved, not geniculate in shorter ones or one to two times geniculate in longer ones, 40 to 200 μm long, occasionally reaching up to 350 μm long, 3.5 to 6 μm wide, and two- to six-septate. Conidia were hyaline, acicular to cylindric, straight in shorter ones, flexuous to curved in longer ones, truncate to obconically truncate at the base, three- to 16-septate, and 50 to 300 × 3.5 to 4.5 μm. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora guatemalensis A.S. Mull. & Chupp (1,3). Voucher specimens were housed at Korea University herbarium (KUS). An isolate from KUS-F23757 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC43980). Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 548 bp was deposited in GenBank (Accession No. JQ995781). This showed >99% similarity with sequences of many Cercospora species, indicating their close phylogenetic relationship. Isolate of KACC43980 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 6 days after inoculation, and were identical to the ones observed in the field. C. guatemalensis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Malawi, India, China, and Japan (2,3), but not in Korea. To our knowledge, this is the first report of C. guatemalensis on sweet basil in Korea. Since farming of sweet basil has recently started on a commercial scale in Korea, the disease poses a serious threat to safe production of this herb, especially in organic farming. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology & Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 5, 2012. (3) J. Nishikawa et al. J. Gen. Plant Pathol. 68:46, 2002.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 874-874 ◽  
Author(s):  
Y. M. Shen ◽  
C. H. Chao ◽  
H. L. Liu

Gynura bicolor (Roxb. ex Willd.) DC., known as Okinawa spinach or hong-feng-cai, is a commonly consumed vegetable in Asian countries. In May 2010, plants with blight and wilt symptoms were observed in commercial vegetable farms in Changhua, Taiwan. Light brown-to-black blight lesions developed from the top of the stems to the petioles and extended to the base of the leaves. Severely infected plants declined and eventually died. Disease incidence was approximately 20%. Samples of symptomatic tissues were surface sterilized in 0.6% NaOCl and plated on water agar. A Phytophthora sp. was consistently isolated and further plated on 10% unclarified V8 juice agar, with daily radial growths of 7.6, 8.6, 5.7, and 2.4 mm at 25, 30, 35, and 37°C, respectively. Four replicates were measured for each temperature. No hyphal growth was observed at 39°C. Intercalary hyphal swellings and proliferating sporangia were produced in culture plates flooded with sterile distilled water. Sporangia were nonpapillate, obpyriform to ellipsoid, base tapered or rounded, and 43.3 (27.5 to 59.3) × 27.6 (18.5 to 36.3) μm. Clamydospores and oospores were not observed. Oospores were present in dual cultures with an isolate of P. nicotianae (p731) (1) A2 mating type, indicating that the isolate was heterothallic. A portion of the internal transcribed spacer sequence was deposited in GenBank (Accession No. HQ717146). The sequence was 99% identical to that of P. drechsleri SCRP232 (ATCC46724) (3), a type isolate of the species. The pathogen was identified as P. drechsleri Tucker based on temperature growth, morphological characteristics, and ITS sequence homology (3). To evaluate pathogenicity, the isolated P. drechsleri was inoculated on greenhouse-potted G. bicolor plants. Inoculum was obtained by grinding two dishes of the pathogen cultured on potato dextrose agar (PDA) with sterile distilled water in a blender. After filtering through a gauze layer, the filtrate was aliquoted to 240 ml. The inoculum (approximately 180 sporangia/ml) was sprayed on 24 plants of G. bicolor. An equal number of plants treated with sterile PDA processed in the same way served as controls. After 1 week, incubation at an average temperature of 29°C, blight and wilt symptoms similar to those observed in the fields appeared on 12 inoculated plants. The pathogen was reisolated from the lesions of diseased stems and leaves, fulfilling Koch's postulates. The controls remained symptomless. The pathogenicity test was repeated once with similar results. G. bicolor in Taiwan has been recorded to be infected by P. cryptogea (1,2), a species that resembles P. drechsleri. The recorded isolates of P. cryptogea did not have a maximal growth temperature at or above 35°C (1,2), a distinctive characteristic to discriminate between the two species (3). To our knowledge, this is the first report of P. drechsleri being associated with stem and foliar blight of G. bicolor. References: (1) P. J. Ann. Plant Pathol. Bull. 5:146, 1996. (2) H. H. Ho et al. The Genus Phytophthora in Taiwan. Institute of Botany, Academia Sinica, Taipei, 1995. (3) R. Mostowfizadeh-Ghalamfarsa et al. Fungal Biol. 114:325, 2010.


Sign in / Sign up

Export Citation Format

Share Document