scholarly journals Incidence of Viruses Infecting Tomato and Their Natural Hosts in the Southeast and Central Regions of Iran

Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Hossain Massumi ◽  
Mehdi Shaabanian ◽  
Akbar Hosseini Pour ◽  
Jahangir Heydarnejad ◽  
Heshmetollah Rahimian

A survey was conducted to determine the incidence of Cucumber mosaic virus (CMV), Beet curly top virus (BCTV), Tomato yellow leaf curl virus (TYLCV), Tomato chlorotic spot virus (TcSV), Potato virus Y (PVY), Potato virus S (PVS), Tomato spotted wilt virus (TSWV), Tomato ringspot virus (TRSV), Tomato aspermy virus (TAV), Arabis mosaic virus (ArMV), Tobacco streak virus (TSV), Tomato bushy stunt virus (TBSV), Tobacco mosaic virus (TMV), and Tomato mosaic virus (ToMV) on tomato (Solanum lycopersicum) in the major horticultural crop growing areas in the southeast and central regions of Iran. A total of 1,307 symptomatic leaf samples from fields and 603 samples from greenhouses were collected from January 2003 to July 2005 in five southeastern and central provinces of Iran. Samples of symptomatic plants were analyzed for virus infection by enzyme-linked immunosorbent assay (ELISA) using specific polyclonal antibodies. ArMV and CMV were the most frequently found viruses, accounting for 25.6 and 23.4%, respectively, of the collected samples. BCTV, TSWV, TMV, PVY, ToMV, and TYLCV were detected in 6.1, 5.8, 5.6, 5, 4.8, and 1.6% of the samples, respectively. TBSV, TAV, TSV, PVS, and TRSV were not detected in any of the samples tested. Double and triple infections involving different combination of viruses were found in 13.9 and 1.7% of samples, respectively. This is the first report of PVY and ArMV as viruses naturally infecting tomato in Iran. Infection of tomato plants with PVY and ArMV was confirmed. Six out of 20 plant species belonging to six genera, growing in tomato fields or in the nearby areas, were found infected with TSWV, TMV, PVY, and CMV.

Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1210-1210 ◽  
Author(s):  
J. Aramburu

During spring 2001, plants of different tomato (Lycopersicon esculentum) cultivars grown in several commercial fields in the eastern Catalonia Region of Spain had fruit with brown patches and young leaves with rings and a bright necrotic mosaic that progressed to stem necrosis of the apex, which might die and later develop new symptomless shoots. The symptoms were similar to those of Cucumber mosaic virus (CMV) and Tomato spotted wilt virus (TSWV). Sap of tomato sample R1 (in buffered saline [0.02 M sodium phosphate, 0.15 M NaCl at pH 7.2, containing 0.2% 2-mercaptoethanol]) was infective to Cucumis sativus (local necrosis), tomato cv. Marmande (systemic infection consisting of chlorotic local lesions and necrotic mosaic), Nicotiana clevelandii and N. benthamiana (chlorosis and rosetting), and Chenopodium quinoa (chlorotic local lesions, systemic mottle, and leaf distortion). The sap was not infective to N. glutinosa, N. tabacum cv. Xanthi, Datura stramonium, or Gomphrena globosa. The host range data indicated that the infective agent in sample R1 could be Parietaria mottle virus (PMoV) (1). Symptomatic plants inoculated in a greenhouse with the R1 isolate and symptomatic from tomato plants from the field were analyzed by indirect enzyme-linked immunosorbent assay (ELISA) and had minimum ELISA values at least 10-fold higher than healthy controls, using a polyclonal antiserum (provided by P. Roggero) of a tomato strain of PMoV denoted tomato virus 1 (2). The R1 isolate of PMoV was negative in ELISA when analyzed with commercial antisera to TSWV, CMV, Tomato mosaic virus, Tomato bushy stunt virus, Potato Y virus, Tobacco etch virus, Pelargonium zonate spot virus, and Tobacco streak virus. References: (1) P. Caciagli et al. Plant Pathol. 38:577, 1989. (2) P. Roggero et al. J. Plant Pathol. 82:159, 2000.


Plant Disease ◽  
2005 ◽  
Vol 89 (11) ◽  
pp. 1244-1244 ◽  
Author(s):  
S. Soler ◽  
C. López ◽  
F. Nuez

The Andean region is home of important genetic diversity for the genus Lycopersicon. A survey of three asymptomatic populations of L. hirsutum, 17 of L. parviflorum, 188 of L. pimpinellifolium, and four cultivated populations of L. esculentum was made in nine departments of Ecuador. Samples were analyzed serologically for Tomato spotted wilt virus (TSWV), Tomato mosaic virus (ToMV), Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), Potato virus X (PVX), Groundnut ringspot virus (GRSV), Tomato chlorosis spot virus (TCSV), and Pepino mosaic virus (PepMV). Samples positive as determined using double-antibody sandwich enzyme-linked immunosorbent assay (absorbance values three times higher than negative controls) were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) with virus-specific primers. L pimpinellifolium was the only species of the four found to be infected with viruses. In the department of Manabí, ToMV was detected in 15 of 16 plants from one population, but only a single plant was infected with PepMV. In this department, PepMV was also detected in a single-plant population that corresponded to a volunteer plant found in the wild and TSWV was detected in another plant. In Esmeraldas and Guayas, two single-plant populations were found infected with PepMV and CMV, respectively. TMV, PVY, PVX, GRSV, and TCSV were not detected in this survey. Specific primers were selected for ToMV (To1/To2, genome coordinates 3498-3518/4902-4922, AJ417701), PepMV (Pe1/Pe2 genome coordinates 5030-5050/5913-5935, AJ606359), CMV (Cm1/Cm2 genome coordinates 541-561/1756-1779, D00356), and TSWV (Ts1/Ts2 genome coordinates 4078-4101/4738-4769, AF208498). Amplicons of the expected size were obtained using RT-PCR and then cloned and sequenced. DNA fragments of ToMV, PepMV, and TSWV showed identities greater than 99% with respective sequences in the GenBank database. The highest identity of the CMV DNA fragment was 92% with an isolate from Indonesia (AB042292). The occurrence of viruses such as CMV, ToMV, and TSWV in coastal Ecuador was not surprising. However, infected plants were not found among the samples collected in the departments of Azuay, Carchí, El Oro, Imbabura, Loja, and Pichincha in eastern Ecuador. L. chilense, L. chmielewskii, L. parviflorum, and L. peruvianum were previously reported as natural hosts of PepMV in central and southern Peru (2), and the virus was also detected in L. esculentum in Chile (1). Our results show that PepMV now occurs in wild L. pimpinellifolium populations along the Pacific coast of the South American continent and that it must have efficient means of transmission, although no specific vectors have as yet been identified for this virus. To our knowledge, this is the first report of PepMV in Ecuador and L. pimpinellifolium as a natural host of PepMV. References: (1) M. Muñoz et al. Fitopatología 37:67, 2002. (2) S. Soler et al. J. Phytopathol. 150:49, 2002.


Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 730-740 ◽  
Author(s):  
Bright Agindotan ◽  
Keith L. Perry

A macroarray was developed for the detection of 11 potato viruses and Potato spindle tuber viroid. The 11 viruses detected included those commonly found or tested for in North American potato seed certification programs: Alfalfa mosaic virus, Cucumber mosaic virus, Potato mop top virus, Potato leafroll virus, Potato latent virus, Potato virus A, Potato virus M, Potato virus S, Potato virus X, Potato virus Y, and Tobacco rattle virus. These viruses were detected using oligonucleotide 70-mer probes and labeled targets prepared by a random primed amplification procedure. Potato plants analyzed included those infected with 12 reference virus stocks and 36 field isolates. Results from the macroarray were entirely consistent with those obtained using a standard serological assay (enzyme-linked immunosorbent assay). Four isolates of Potato spindle tuber viroid, in mixed infection with one or more viruses, also were detected in the array, although strong hybridization signals required amplification with viroid-specific primers in combination with anchored-random primers. In individual plants, up to four viruses, or a viroid plus two viruses, were detected, with no apparent competition or inhibition. Macroarrays are a cost-effective approach to the simultaneous diagnostic detection of multiple pathogens from infected plants.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1069-1074 ◽  
Author(s):  
A. R. Golnaraghi ◽  
N. Shahraeen ◽  
R. Pourrahim ◽  
Sh. Farzadfar ◽  
A. Ghasemi

A survey was conducted to determine the incidence of Alfalfa mosaic virus (AlMV), Bean common mosaic virus (BCMV), Bean yellow mosaic virus (BYMV), Blackeye cowpea mosaic virus (BlCMV), Cucumber mosaic virus (CMV), Pea enation mosaic virus (PEMV), Peanut mottle virus (PeMoV), Soybean mosaic virus (SMV), Tobacco mosaic virus (TMV), Tobacco ringspot virus (TRSV), Tobacco streak virus (TSV), Tomato ringspot virus (ToRSV), and Tomato spotted wilt virus (TSWV) on soybean (Glycine max) in Iran. Totals of 3,110 random and 1,225 symptomatic leaf samples were collected during the summers of 1999 and 2000 in five provinces of Iran, where commercial soybean is grown, and tested by enzyme-linked immunosorbent assay (ELISA) using specific polyclonal antibodies. Serological diagnoses were confirmed by electron microscopy and host range studies. The highest virus incidence among the surveyed provinces was recorded in Mazandaran (18.6%), followed by Golestan (15.7%), Khuzestan (14.2%), Ardabil (13.9%), and Lorestan (13.5%). Incidence of viruses in decreasing order was SMV (13.3%), TSWV (5.4%), TRSV (4.2%), TSV (4.1%), PEMV (2.9%), BYMV (2.2%), ToRSV (2.1%), AlMV (1.3%), BCMV (0.8%), and CMV (0.6%). Additionally, 1.5% of collected leaf samples had positive reactions in ELISA with antiserum to TMV, indicating the possible infection of soybeans in Iran with a Tobamovirus that is related serologically to TMV. Of 195 leaves from plants showing soybean pod set failure syndrome (PSF) in Mazandaran and Lorestan, only 14 (7.2%) samples had viral infection. No correlation was observed between PSF and presence of the 13 viruses tested, suggesting the involvement of other viruses or factors in this syndrome. To investigate the presence of seed-borne viruses, including SMV, TRSV, ToRSV, and TSV, 7,830 soybean seeds were collected randomly at harvesting time from the major sites of soybean seed production located in Mazandaran and Golestan provinces. According to ELISA analyses of germinated seedlings, 7.1 and 8.9% of the seed samples from Golestan and Mazandaran provinces, respectively, transmitted either SMV, TRSV, ToRSV, or TSV through seed. We also showed that SMV and other seed transmissible viruses, as well as TSWV, usually are the most prevalent viruses in soybean fields in Iran. In this survey, natural occurrence of AlMV, BCMV, BlCMV, BYMV, CMV, PEMV, PeMoV, and TSWV was reported for the first time on soybeans in Iran.


Bragantia ◽  
2008 ◽  
Vol 67 (2) ◽  
pp. 391-399 ◽  
Author(s):  
Silvia Regina Luz Palazzo ◽  
Addolorata Colariccio ◽  
Arlete Marchi Tavares de Melo

Amostras de tomateiro (Lycopersicon esculentum Mill) ‘Alambra’ coletadas nas regiões produtoras de Elias Fausto, Monte-Mor e Mogi-Guaçú (SP), com sintomas de amarelecimento foliar generalizado semelhante aqueles causados por vírus foram submetidas à identificação do agente causal, por testes biológicos de transmissão mecânica, pela determinação do círculo de hospedeiras, empregando-se plantas indicadoras e diferenciadoras pertencentes às famílias Chenopodiaceae e Solanaceae pela identificação sorológica por PTA-ELISA do Potato virus Y (PVY), Pepper yellow mosaic virus (PepYMV), Cucumber mosaic virus (CMV), Tomato mosaic virus (ToMV) e DAS-ELISA com antissoros policlonais para as espécies Tomato spot wilt vírus (TSWV), Tomato chlorotic spot virus (TCSV), Groundnut ringspot virus (GRSV), Chrysanthemum stem necrosis virus (CSNV) e anticorpos monoclonais para as estirpes do PVY comum (PVYº), PVY necrótico (PVY N) e PVY clorótico (PVY C). Das amostras coletadas 19 reagiram positivamente, com o PVY em PTA-ELISA e PVYºem DAS-ELISA. Plantas de Chenopodium amaranticolor reagiram com sintoma local e plantas de Nicotiana glutinosa, N. tabacum ‘WB’, N. sylvestris, N.debneyi, N. tabacum ‘Sansun’ reagiram com sintomas de mosaico sistêmico; tomateiros ‘Alambra’ manifestaram sintomas de mosaico-amarelo. Plantas de Datura stramonium, D. metel e C. annuum ‘Magda’ não foram infectadas. A ausência de sintomas em C.annuum ‘Magda’, identificou a presença do PVY patotipo 1 (PVYº1), nas 19 amostras. Como foi identificada a mesma espécie de vírus nas amostras, optou-se pela inoculação do isolado de tomate ‘Alambra’ de Elias Fausto nos dezenove acessos de Lycopersicon spp. do Banco Ativo de Germoplasma (BAG)- IAC. O delineamento dos experimentos foi inteiramente casualizado. A reação dos acessos foi avaliada pela manifestação dos sintomas, pelos resultados positivos ou negativos após testes de retro-inoculação e PTA-ELISA, pela análise do χ2 utilizando-se a proporção de plantas sintomáticas e assintomáticas, com resultados positivos ou que não manifestaram sintomas e reagiram negativamente, em PTA-ELISA, constituindo, portanto fontes potenciais de genes de resistência para o PVY em tomate.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1395-1395 ◽  
Author(s):  
M. Krishnareddy ◽  
Salil Jalali ◽  
D. K. Samuel

Okra (Abelmoscus esculentus (L.) Moench) is an important vegetable crop of India and other subropical and tropical countries. In 2000 and 2001, in the states of Karnataka and Tamil Nadu, okra was severely affected by a new disease. Since that time, the disease has spread to other states: Andhra Pradesh, Madhya Pradesh, Haryana, and Maharashtra. Chlorotic spots, chlorotic leaf blotches, distortion of leaves, chlorotic streaking, distortion of fruits, and severe yield losses as much as 63% characterize the disease. The causal virus induces local and systemic chlorotic and necrotic lesions on Vigna unguiculata (L.) Walp. cv. C-152 and Chenopodium amaranticolor Coste & Reyne., chlorotic local lesions and mosaic on Cucumis sativus L., necrotic local lesions on Gossypium hirsutum L. and black gram (Vigna mungo L.), and chlorotic local lesions and systemic necrosis on sunflower (Helianthus annuus L.). Host reactions on these species are similar to those described for the ilarvirus Tobacco streak virus (TSV) (3). Electron microscopic observation of leafdip preparations from field samples and partially purified virus preparations revealed the presence of isometric virus particles measuring 25 to 30 nm in diameter. The virus was purified from mechanically inoculated okra by differential and sucrose density gradient centrifugation, and disease symptoms were reproduced in okra mechanically inoculated with the purified virus. In direct antigen coated enzyme-linked immunosorbent assay and immunosorbent electron microscopy tests, the purified virus and sap extracts reacted positively with polyclonal antibodies to TSV, the ilarvirus associated with sunflower necrosis and peanut stem necrosis diseases (1,2), but did not react positively to Turnip mosaic virus and Okra mosaic virus that are previously reported to infect okra. In reverse transcription-polymerase chain reaction (RT-PCR), using oligonucleotide primers designed to amplify the entire coat protein region of TSV, an approximately 800-bp DNA fragment was obtained from purified virus and okra displaying fruit distortion mosaic disease (OFDM) but not from healthy okra. On the basis of host range, serological relationship, electron microscopy, and RTPCR amplification, the virus causing OFDM is an ilarvirus closely related to TSV. To our knowledge, this is the first report of the occurrence of an ilarvirus in okra, and is the third and most recent report of an ilarvirus related to TSV causing disease in crops on the Indian subcontinent (1,2). References:(1). A. I. Bhat et al. Arch. Virol. 147:651, 2002. (2). A. S. Reddy et al. Plant Dis. 86:173, 2002. (3). S. W. Scott. Tobacco streak virus. No 381 in: Descriptions of Plant Viruses. CMI/AAB, Surrey, U.K., 2001.


2002 ◽  
Vol 53 (3) ◽  
pp. 333 ◽  
Author(s):  
A. Ali ◽  
S. Hassan

Malakand Agency is a unique production area in the North West Frontier Province (NWFP) of Pakistan that is frost-free and in which tomato is grown as a winter crop. Tomato production in this area has been affected by virus-like diseases for the last 10 years. Tomato nurseries and fields at 11 locations in Malakand Agency were surveyed for tomato viruses during 1994–95. A total of 1071 samples from nurseries and 5083 samples from 142 fields were tested by indirect enzyme-linked immunosorbent assay (ELISA). In nurseries, 3 viruses, Potato virus X (PVX), Potato virus Y (PVY), and Tomato mosaic virus (ToMV), were detected with an incidence range of 9.8–22.3, 0–36.6, and 16.5–51.3%, respectively. In the field, 5 viruses [Cucumber mosaic virus (CMV), PVX, PVY, ToMV, and Tomato yellow top virus (TYTV)] were frequently found with an incidence range of 0–13.3%, 2.6–16.7%, 0.4–13.8%, 26.1–41.3%, and 1.7–11.3%, respectively. All 5 viruses except TYTV were also detected from weed species in tomato fields or in the nearby vicinity. Of 12 commercial tomato varieties screened against CMV, PVX, PVY, and ToMV, 2 varieties (Florist and Forset) were resistant to 4 of the viruses including ToMV, for which the highest incidence was recorded in nurseries and field. These 2 varieties represent a previously undescribed and potentially useful source of resistance to the 4 inoculated viruses.


Plant Disease ◽  
2010 ◽  
Vol 94 (10) ◽  
pp. 1248-1254 ◽  
Author(s):  
T. Maoka ◽  
S. Sugiyama ◽  
Y. Maruta ◽  
T. Hataya

A complementary DNA (cDNA) macroarray was developed for simultaneous detection of 12 different potato viruses. A suitable region in the viral genome for each was selected for Alfalfa mosaic virus, Cucumber mosaic virus, Potato aucuba mosaic virus, Potato leafroll virus, Potato mop-top virus, Potato virus A, Potato virus M, Potato virus S, Potato virus X, Potato virus Y, Tomato ringspot virus, and Tomato spotted wilt virus, and their respective cDNAs were cloned into plasmid vectors. Capture probes for each virus ranging from 290 to 577 bp were generated by polymerase chain reaction (PCR) and immobilized on a nylon membrane. Total RNAs were extracted from each of these virus infected-plants, and cDNAs were synthesized from the RNA extracts using a random 9-mer primer. Subsequently, PCR reactions were performed using one primer pair for each of the 12 viruses. During PCR, amplified cDNAs were labeled with biotin and used as a target for hybridization analyses on a macroarray membrane. Hybridization signals between capture probes for the 12 viruses and their respective target cDNAs were observed using chemiluminescent or colorimetric detection. In all viruses, hybridization signals with capture probes were detected only when homologous virus targets were examined, and no hybridization to healthy plant extract was observed, facilitating identification of each virus. The results by colorimetric detection agreed with those obtained using chemiluminescence. The macroarray method developed was 5 × 102 to 4 × 106 times more sensitive than enzyme-linked immunosorbent assay and 5 to 5 × 104 times more sensitive than reverse-transcription PCR, except for Alfalfa mosaic virus. Colorimetric detection and substantial reduction in cross-hybridization signals much improved the method compared with other array-based detection methods for practical use.


Author(s):  
K. Saratbabu ◽  
K. Vemana ◽  
A.K. Patibanda ◽  
B. Sreekanth ◽  
V. Srinivasa Rao

Background: Peanut stem necrosis disease (PSND) caused by Tobacco streak virus (TSV) is a major constraint for groundnut production in Andhra Pradesh (A.P.). However, studies on prevalence and spread of the disease confined to only few districts of A.P. with this background current study focused on incidence and spread of the disease in entire state of A.P. Further an isolate of TSV occurring in A.P. characterized on the basis of genetic features by comparing with other TSV isolates originated from different hosts and locations from world.Methods: Roving survey was conducted during kharif 2017-18 in groundnut growing districts of Andhra Pradesh (A.P.) for peanut stem necrosis disease incidence. Groundnut plants showing PSND symptoms were collected and tested with direct antigen coating enzyme linked immunosorbent assay (DAC-ELISA). Groundnut samples found positive by ELISA once again tested by reverse transcription polymerase chain reaction (RT-PCR). The representative TSV-GN-INDVP groundnut isolate from Prakasham district was maintained on cowpea seedlings by standard sap inoculation method in glasshouse for further molecular characterization. The Phylogenetic tree for coat protein (CP) gene was constructed using aligned sequences with 1000 bootstrap replicates following neighbor-joining phylogeny.Result: Thirty-eight (52.7%) of seventy-two groundnut samples collected from different locations in A.P were given positive reaction to TSV by DAC-ELISA. For the first time, PSND incidence observed in coastal districts (Krishna, Guntur, Sri Pottisriramulu Nellore, Prakasham) of A.P. Maximum PSND incidence recorded from Bathalapalli (22.2%) and the minimum incidence in Mulakalacheruvu (4.1%). The coat protein (CP) gene of TSV-GN-INDVP groundnut isolate was amplified by RT-PCR and it shared maximum per cent nucleotide identity (97.51-98.62%) with TSV isolates from groundnut and other different crops reported in India. All Indian isolates cluster together irrespective of crop and location based on the phylogenetic analysis.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
X. D. Li ◽  
Y. Q. Li ◽  
H. G. Wang

Flue-cured tobacco is an important crop in Henan Province, China. During the 2000 growing season, many tobacco plants showed various degrees of mottling, mosaic, vein clearing, or vein necrosis in most of the counties. Some plants even died at an early stage of growth. A survey was conducted in May-June in several tobacco-growing counties, and the incidence of symptomatic plants in individual fields ranged from 10 to 85%. The most widely planted tobacco varieties, NC89, K326, and K346, were highly susceptible. Symptomatic plants were collected from Jiaxian and Xiangcheng counties and samples were tested by enzyme-linked immunosorbent assay for Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), and Potato virus X (PVX). Of 65 samples tested, 21 were positive for only PVY, 16 positive for only CMV, one each was positive for only TMV or PVX. Nineteen samples were doubly infected with various combinations of these viruses and six were infected with combinations of three viruses. The causal agent(s) in the remaining sample could not be determined. In total, CMV was detected in 40 samples, PVY in 38, PVX in 10, and TMV in 7 samples. TMV and CMV used to be the most important viruses and PVY occurred only rarely. But PVY has become prevalent in Henan and in neighboring Shandong province (2). CMV and TMV were reported to be the most prevalent viruses in Shanxi (1) and Fujian Provinces (3). Because resistant varieties are not available, and mixed infections are more common, the results presented here explain why huge damage is occurring in tobacco crops in recent years. Some varieties are partially resistant to TMV and CMV but the varieties commonly grown are highly susceptible to PVY. Therefore, breeding for resistance to viruses, especially to PVY, is urgent to control the occurrence of tobacco viral diseases. References: (1) J. L. Cheng et al. Acta Tabacaria Sin. 4:43, 1998. (2) J. B. Wang et al. Chinese Tobacco Sci. 1:26, 1998. (3) L. H. Xie et al. Acta Tabacaria Sin. 2:25, 1994.


Sign in / Sign up

Export Citation Format

Share Document